Efficient separate quantification of state preparation errors and
measurement errors on quantum computers and their mitigation
- URL: http://arxiv.org/abs/2310.18881v1
- Date: Sun, 29 Oct 2023 02:51:06 GMT
- Title: Efficient separate quantification of state preparation errors and
measurement errors on quantum computers and their mitigation
- Authors: Hongye Yu, Tzu-Chieh Wei
- Abstract summary: Current noisy quantum computers have multiple types of errors, which can occur in the state preparation, measurement/readout, and gate operation.
We propose a simple and resource-efficient approach to quantify separately the state preparation and readout error rates.
- Score: 0.5439020425819
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current noisy quantum computers have multiple types of errors, which can
occur in the state preparation, measurement/readout, and gate operation, as
well as intrinsic decoherence and relaxation. Partly motivated by the booming
of intermediate-scale quantum processors, measurement and gate errors have been
recently extensively studied, and several methods of mitigating them have been
proposed and formulated in software packages (e.g., in IBM Qiskit). Despite
this, the state preparation error and the procedure to quantify it have not yet
been standardized, as state preparation and measurement errors are usually
considered not directly separable. Inspired by a recent work of Laflamme, Lin,
and Mor [Phys. Rev. A 106, 012439 (2022)], we propose a simple and
resource-efficient approach to quantify separately the state preparation and
readout error rates. With these two errors separately quantified, we also
propose methods to mitigate them separately, especially mitigating state
preparation errors with linear (with the number of qubits) complexity. As a
result of the separate mitigation, we show that the fidelity of the outcome can
be improved by an order of magnitude compared to the standard measurement error
mitigation scheme. We also show that the quantification and mitigation scheme
is resilient against gate noise and can be immediately applied to current noisy
quantum computers. To demonstrate this, we present results from cloud
experiments on IBM's superconducting quantum computers. The results indicate
that the state preparation error rate is also an important metric for qubit
metrology that can be efficiently obtained.
Related papers
- Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling [7.804530685405802]
Quantum measurements are a fundamental component of quantum computing.
On modern-day quantum computers, measurements can be more error prone than quantum gates.
We show that measurement errors can be tailored into a simple error model using randomized compiling.
arXiv Detail & Related papers (2023-12-21T18:57:13Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
We estimate the resources required to fault-tolerantly perform quantum phase estimation on a minimal chemical example.
We find that implementing even a simple chemistry circuit requires 1,000 qubits and 2,300 quantum error correction rounds.
arXiv Detail & Related papers (2023-07-06T18:00:10Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - Testing platform-independent quantum error mitigation on noisy quantum
computers [1.0499611180329804]
We apply quantum error mitigation techniques to a variety of benchmark problems and quantum computers.
We define an empirically motivated, resource-normalized metric of the improvement of error mitigation which we call the improvement factor.
arXiv Detail & Related papers (2022-10-13T17:15:03Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Error metric for non-trace-preserving quantum operations [3.6492255655113395]
We study the problem of measuring errors in non-trace-preserving quantum operations.
We propose an error metric that efficiently provides an upper bound on the trace distance between the normalized output states.
arXiv Detail & Related papers (2021-10-05T18:54:14Z) - Conditionally rigorous mitigation of multiqubit measurement errors [0.0]
measurement errors are significantly larger than gate errors on some platforms.
We develop a measurement error mitigation technique, conditionally rigorous TMEM, that is not sensitive to state-preparation errors.
arXiv Detail & Related papers (2021-09-09T17:49:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Simple Mitigation of Global Depolarizing Errors in Quantum Simulations [0.0]
We present a simple but effective error mitigation technique based on the assumption that noise in a deep quantum circuit is well described by global depolarizing error channels.
By measuring the errors directly on the device, we use an error model ansatz to infer error-free results from noisy data.
arXiv Detail & Related papers (2021-01-05T18:31:28Z) - Scalable quantum processor noise characterization [57.57666052437813]
We present a scalable way to construct approximate MFMs for many-qubit devices based on cumulant expansion.
Our method can also be used to characterize various types of correlation error.
arXiv Detail & Related papers (2020-06-02T17:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.