論文の概要: Learning List-Level Domain-Invariant Representations for Ranking
- arxiv url: http://arxiv.org/abs/2212.10764v3
- Date: Tue, 31 Oct 2023 16:30:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 04:22:46.945124
- Title: Learning List-Level Domain-Invariant Representations for Ranking
- Title(参考訳): ランキングのためのリストレベルドメイン不変表現の学習
- Authors: Ruicheng Xian, Honglei Zhuang, Zhen Qin, Hamed Zamani, Jing Lu, Ji Ma,
Kai Hui, Han Zhao, Xuanhui Wang, Michael Bendersky
- Abstract要約: リストレベルのアライメント -- より高いレベルのリストでドメイン不変表現を学習する。
利点は2つある: これは、ランク付けに縛られる最初のドメイン適応の一般化をもたらし、その結果、提案法に対する理論的支援を提供する。
- 参考スコア(独自算出の注目度): 59.3544317373004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain adaptation aims to transfer the knowledge learned on (data-rich)
source domains to (low-resource) target domains, and a popular method is
invariant representation learning, which matches and aligns the data
distributions on the feature space. Although this method is studied extensively
and applied on classification and regression problems, its adoption on ranking
problems is sporadic, and the few existing implementations lack theoretical
justifications. This paper revisits invariant representation learning for
ranking. Upon reviewing prior work, we found that they implement what we call
item-level alignment, which aligns the distributions of the items being ranked
from all lists in aggregate but ignores their list structure. However, the list
structure should be leveraged, because it is intrinsic to ranking problems
where the data and the metrics are defined and computed on lists, not the items
by themselves. To close this discrepancy, we propose list-level alignment --
learning domain-invariant representations at the higher level of lists. The
benefits are twofold: it leads to the first domain adaptation generalization
bound for ranking, in turn providing theoretical support for the proposed
method, and it achieves better empirical transfer performance for unsupervised
domain adaptation on ranking tasks, including passage reranking.
- Abstract(参考訳): ドメイン適応は、(データリッチ)ソースドメインで学んだ知識を(低リソース)ターゲットドメインに転送することを目的としており、一般的な方法は不変表現学習(invariant representation learning)である。
この手法は分類問題や回帰問題に対して広く研究され応用されているが、ランキング問題への導入は散発的であり、既存の実装では理論上の正当性を欠いている。
本稿では、ランク付けのための不変表現学習を再考する。
事前の作業のレビューでは,項目レベルのアライメントという,すべてのリストからランク付けされている項目の分布をアライメントする機能を実装していますが,リスト構造は無視しています。
しかし、リスト構造は、データとメトリクスがリスト上で定義され、計算される問題に固有のものであるため、それ自体はアイテムではないため、活用されるべきである。
この矛盾を解消するために、リストレベルのアライメント-学習ドメイン不変表現をより高いレベルのリストで提案する。
その利点は2つある:それはランク付けにバインドされた最初のドメイン適応一般化につながり、提案手法の理論的サポートを提供し、パッセージリランキングを含むランク付けタスクにおける教師なしドメイン適応のより良い経験的転送性能を達成する。
関連論文リスト
- AGRaME: Any-Granularity Ranking with Multi-Vector Embeddings [53.78802457488845]
我々は,多ベクトル埋め込みを利用して粒度の異なるレベルにランク付けする,任意の粒度ランキングの考え方を紹介した。
検索強化世代におけるポストホック励振付加への命題レベルのランク付けの適用を実証する。
論文 参考訳(メタデータ) (2024-05-23T20:04:54Z) - Rethinking Object Saliency Ranking: A Novel Whole-flow Processing
Paradigm [22.038715439842044]
本稿では、その「重要順」によって、有能な物体のランク付けに完全にフォーカスすることを目的とした、有能なランキングのための新しいパラダイムを提案する。
提案手法は、広く使われているSALICONの既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-12-06T01:51:03Z) - Replace Scoring with Arrangement: A Contextual Set-to-Arrangement
Framework for Learning-to-Rank [40.81502990315285]
ラーニング・トゥ・ランク(Learning-to-rank)は、トップNレコメンデーションタスクの中核的なテクニックであり、理想的なランク付けはアイテムからアレンジへのマッピングである。
既存のソリューションのほとんどは確率的ランキング原理(PRP)のパラダイムに該当する。すなわち、まず候補セットで各項目をスコアし、次にソート操作を行い、トップランキングリストを生成する。
本稿では,個別のスコアリングやソートを必要とせずに,候補項目の順列を直接生成する新しいフレームワークであるSet-To-Arrangement Ranking (STARank)を提案する。
論文 参考訳(メタデータ) (2023-08-05T12:22:26Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
本稿では,二部類ランキングにおける公平性を実現するためのモデルに依存しない後処理フレームワークxOrderを提案する。
xOrderは、教師なしおよび教師なしの公正度メトリックを含む、さまざまな分類モデルとランキングフェアネスメトリクスと互換性がある。
提案アルゴリズムを,4つのベンチマークデータセットと2つの実世界の患者電子健康記録リポジトリ上で評価した。
論文 参考訳(メタデータ) (2023-07-27T07:42:44Z) - Universal Domain Adaptation in Ordinal Regression [11.703377306384695]
順序回帰(OR)における普遍領域適応(UDA)の問題に対処する。
本稿では, クラスタリングの仮定に基づいて, OR設定のアンダーパフォーマンスに基づいて, 分類のために開発されたUDA技術について述べる。
本稿では,OR分類器と注文学習の補助的タスクを補完する手法を提案する。これは,共通インスタンスとプライベートインスタンスの識別と,ランキングによるクラスラベルのプライベートターゲットイメージへの拡張という二重の役割を担っている。
論文 参考訳(メタデータ) (2021-06-22T07:23:39Z) - ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation [84.90801699807426]
ドメイン間でアライメントすべき機能について検討し、ドメインアライメントが積極的に分類に役立てることを提案する。
我々は、ソースドメインの機能を、整列すべきタスク関連/識別機能と、回避/無視されるべきタスク関連機能に明示的に分解します。
論文 参考訳(メタデータ) (2021-06-21T02:17:48Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDAはラベル付きソースドメインからラベルなしターゲットドメインへの効率的な知識伝達を試みている。
本稿では,領域にまたがるカテゴリ別センタロイドを適応させるコントラスト学習手法を提案する。
提案手法を自己学習で拡張し,メモリ効率の良い時間アンサンブルを用いて一貫性と信頼性の高い擬似ラベルを生成する。
論文 参考訳(メタデータ) (2021-05-05T11:55:53Z) - Rank over Class: The Untapped Potential of Ranking in Natural Language
Processing [8.637110868126546]
我々は、現在分類を用いて対処されている多くのタスクが、実際には分類モールドに切り替わっていると論じる。
本稿では,一対のテキストシーケンスの表現を生成するトランスフォーマーネットワークからなる新しいエンドツーエンドランキング手法を提案する。
重く歪んだ感情分析データセットの実験では、ランキング結果を分類ラベルに変換すると、最先端のテキスト分類よりも約22%改善する。
論文 参考訳(メタデータ) (2020-09-10T22:18:57Z) - Distance-based Positive and Unlabeled Learning for Ranking [13.339237388350043]
階級の学習は一般的な関心の問題である。
整数線形プログラムを用いた表現の組み合わせによるランク付け学習は,「興味のある項目に類似する項目は少ない」ほど軽快な場合には有効であることを示す。
論文 参考訳(メタデータ) (2020-05-20T01:53:58Z) - Structured Prediction with Partial Labelling through the Infimum Loss [85.4940853372503]
弱い監督の目標は、収集コストの安いラベル付け形式のみを使用してモデルを学習できるようにすることである。
これは、各データポイントに対して、実際のものを含むラベルのセットとして、監督がキャストされる不完全なアノテーションの一種です。
本稿では、構造化された予測と、部分的なラベリングを扱うための無限損失の概念に基づく統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-03-02T13:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。