論文の概要: Complete the Missing Half: Augmenting Aggregation Filtering with
Diversification for Graph Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2212.10822v1
- Date: Wed, 21 Dec 2022 07:24:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 14:01:18.662471
- Title: Complete the Missing Half: Augmenting Aggregation Filtering with
Diversification for Graph Convolutional Neural Networks
- Title(参考訳): 残り半分:グラフ畳み込みニューラルネットワークの多様化による集約フィルタの強化
- Authors: Sitao Luan, Mingde Zhao, Chenqing Hua, Xiao-Wen Chang, Doina Precup
- Abstract要約: 現在のグラフニューラルネットワーク(GNN)は、特定のデータセットで学習するすべてのGNNモデルに根ざした問題要因である可能性が示されている。
集約操作をそれらの双対、すなわち、ノードをより明確にし、アイデンティティを保存する多様化演算子で拡張する。
このような拡張は、アグリゲーションを2チャネルのフィルタリングプロセスに置き換え、理論上、ノード表現を豊かにするのに役立つ。
実験では,モデルの望ましい特性と,9ノード分類タスクのベースライン上での大幅な性能向上について検討した。
- 参考スコア(独自算出の注目度): 46.14626839260314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The core operation of current Graph Neural Networks (GNNs) is the aggregation
enabled by the graph Laplacian or message passing, which filters the
neighborhood information of nodes. Though effective for various tasks, in this
paper, we show that they are potentially a problematic factor underlying all
GNN models for learning on certain datasets, as they force the node
representations similar, making the nodes gradually lose their identity and
become indistinguishable. Hence, we augment the aggregation operations with
their dual, i.e. diversification operators that make the node more distinct and
preserve the identity. Such augmentation replaces the aggregation with a
two-channel filtering process that, in theory, is beneficial for enriching the
node representations. In practice, the proposed two-channel filters can be
easily patched on existing GNN methods with diverse training strategies,
including spectral and spatial (message passing) methods. In the experiments,
we observe desired characteristics of the models and significant performance
boost upon the baselines on 9 node classification tasks.
- Abstract(参考訳): 現在のグラフニューラルネットワーク(gnns)のコアオペレーションは、グラフラプラシアンまたはメッセージパッシングによって有効となる集約であり、ノードの近傍情報をフィルタリングする。
様々なタスクに有効であるが,本論文では,ノード表現を強制的に強制することで,ノードのアイデンティティが徐々に失われ,識別不能になるため,すべてのGNNモデルが特定のデータセット上で学習する上で問題となる可能性があることを示す。
したがって、それらの双対、すなわち、ノードをより区別し、アイデンティティを保存する多様化演算子で集約操作を増強する。
このような拡張は、アグリゲーションを2チャネルのフィルタリングプロセスに置き換え、理論上、ノード表現を豊かにするのに役立つ。
実際に提案した2チャネルフィルタは,スペクトル法や空間法(メッセージパッシング)など,多様なトレーニング戦略を持つ既存のGNN手法に容易に適用することができる。
実験では,モデルの望ましい特性と,9ノード分類タスクのベースライン上での性能向上について検討した。
関連論文リスト
- SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
グラフニューラルネットワーク(GNN)は,グラフの伝播と集約によるグラフ構造情報の符号化を主目的とする。
等質グラフ、異質グラフ、知識グラフのようなより複雑なグラフなど、複数の種類のグラフの表現学習において優れた性能を発揮した。
深部GNNの性能劣化現象に対して,新しい視点を提案する。
論文 参考訳(メタデータ) (2024-07-03T02:40:39Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
グラフニューラルネットワーク(GNN)が導入される以前、不規則なデータ、特にグラフのモデリングと解析は、ディープラーニングのアキレスのヒールであると考えられていた。
本稿では,GNNのコア操作に対して,極めて単純かつ無作為な修正を施した中央ノード置換変分関数を提案する。
モデルの具体的な性能向上は、モデルがより少ないパラメータを使用しながら、有意なマージンで過去の最先端結果を上回った場合に観察される。
論文 参考訳(メタデータ) (2021-09-20T05:04:26Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Complete the Missing Half: Augmenting Aggregation Filtering with
Diversification for Graph Convolutional Networks [46.14626839260314]
我々は、現在のグラフニューラルネットワーク(GNN)が、特定のデータセットで学習するすべてのGNNメソッドの根底にある問題である可能性を示している。
集約操作をそれらの双対、すなわち、ノードをより明確にし、アイデンティティを保存する多様化演算子で拡張する。
このような拡張は、アグリゲーションを2チャネルのフィルタリングプロセスに置き換え、理論上、ノード表現を豊かにするのに役立つ。
実験では,モデルの望ましい特性と,9ノード分類タスクのベースライン上での大幅な性能向上について検討した。
論文 参考訳(メタデータ) (2020-08-20T08:45:16Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。