Religion and Spirituality on Social Media in the Aftermath of the Global
Pandemic
- URL: http://arxiv.org/abs/2212.11121v1
- Date: Sun, 11 Dec 2022 18:41:02 GMT
- Title: Religion and Spirituality on Social Media in the Aftermath of the Global
Pandemic
- Authors: Olanrewaju Tahir Aduragba, Alexandra I. Cristea, Pete Phillips, Jonas
Kurlberg, Jialin Yu
- Abstract summary: We analyse the sudden change in religious activities twofold: we create and deliver a questionnaire, as well as analyse Twitter data.
Importantly, we also analyse the temporal variations in this process by analysing a period of 3 months: July-September 2020.
- Score: 59.930429668324294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During the COVID-19 pandemic, the Church closed its physical doors for the
first time in about 800 years, which is, arguably, a cataclysmic event. Other
religions have found themselves in a similar situation, and they were
practically forced to move online, which is an unprecedented occasion. In this
paper, we analyse this sudden change in religious activities twofold: we create
and deliver a questionnaire, as well as analyse Twitter data, to understand
people's perceptions and activities related to religious activities online.
Importantly, we also analyse the temporal variations in this process by
analysing a period of 3 months: July-September 2020. Additionally to the
separate analysis of the two data sources, we also discuss the implications
from triangulating the results.
Related papers
- Sentiment Analysis of Twitter Posts on Global Conflicts [0.0]
We developed a sentiment analysis model to analyze social media sentiment, especially tweets, during global conflicting scenarios.
We identified a recent global dispute incident on Twitter and collected around 31,000 filtered Tweets for several months to analyze human sentiment worldwide.
arXiv Detail & Related papers (2023-11-21T04:39:47Z) - Human Behavior in the Time of COVID-19: Learning from Big Data [71.26355067309193]
Since March 2020, there have been over 600 million confirmed cases of COVID-19 and more than six million deaths.
The pandemic has impacted and even changed human behavior in almost every aspect.
Researchers have been employing big data techniques such as natural language processing, computer vision, audio signal processing, frequent pattern mining, and machine learning.
arXiv Detail & Related papers (2023-03-23T17:19:26Z) - EDSA-Ensemble: an Event Detection Sentiment Analysis Ensemble
Architecture [63.85863519876587]
Using Sentiment Analysis to understand the polarity of each message belonging to an event, as well as the entire event, can help to better understand the general and individual feelings of significant trends and the dynamics on online social networks.
We propose a new ensemble architecture, EDSA-Ensemble, that uses Event Detection and Sentiment Analysis to improve the detection of the polarity for current events from Social Media.
arXiv Detail & Related papers (2023-01-30T11:56:08Z) - What goes on inside rumour and non-rumour tweets and their reactions: A
Psycholinguistic Analyses [58.75684238003408]
psycho-linguistics analyses of social media text are vital for drawing meaningful conclusions to mitigate misinformation.
This research contributes by performing an in-depth psycholinguistic analysis of rumours related to various kinds of events.
arXiv Detail & Related papers (2021-11-09T07:45:11Z) - Debate on Online Social Networks at the Time of COVID-19: An Italian
Case Study [4.176752121302988]
We analyze how the interaction patterns around popular influencers in Italy changed during the first six months of 2020.
We collected a large dataset for this group of public figures, including more than 54 million comments on over 140 thousand posts.
We also analyze the user sentiment through the psycholinguistic properties of comments, and the results testified the rapid boom and disappearance of topics related to the pandemic.
arXiv Detail & Related papers (2021-06-02T08:25:19Z) - Leveraging Natural Language Processing to Mine Issues on Twitter During
the COVID-19 Pandemic [0.3674863913115431]
The recent global outbreak of the coronavirus disease (COVID-19) has spread to all corners of the globe.
To understand the public concerns and responses to the pandemic, a system that can leverage machine learning techniques to filter out irrelevant tweets is needed.
In this study, we constructed a system to identify the relevant tweets related to the COVID-19 pandemic throughout January 1st, 2020 to April 30th, 2020.
arXiv Detail & Related papers (2020-10-31T22:26:26Z) - Global Sentiment Analysis Of COVID-19 Tweets Over Time [0.0]
The social networking site, Twitter showed an unprecedented increase in tweets related to the novel Coronavirus in a very short span of time.
This paper presents the global sentiment analysis of tweets related to Coronavirus and how the sentiment of people in different countries has changed over time.
arXiv Detail & Related papers (2020-10-27T12:10:10Z) - Country Image in COVID-19 Pandemic: A Case Study of China [79.17323278601869]
Country image has a profound influence on international relations and economic development.
In the worldwide outbreak of COVID-19, countries and their people display different reactions.
In this study, we take China as a specific and typical case and investigate its image with aspect-based sentiment analysis on a large-scale Twitter dataset.
arXiv Detail & Related papers (2020-09-12T15:54:51Z) - Cross-language sentiment analysis of European Twitter messages duringthe
COVID-19 pandemic [14.821130865253304]
We analyze Twitter messages collected during the first months of the COVID-19 pandemic in Europe with regard to their sentiment.
We separate the results by country of origin, and correlate their temporal development with events in those countries.
We see, for example, that lockdown announcements correlate with a deterioration of mood in almost all surveyed countries, which recovers within a short time span.
arXiv Detail & Related papers (2020-08-27T15:00:36Z) - Beneath the Tip of the Iceberg: Current Challenges and New Directions in
Sentiment Analysis Research [49.32039466553038]
Sentiment analysis has come a long way since it was first introduced as a task nearly 20 years ago.
There is an underlying perception that this field has reached its maturity.
We discuss this perception by pointing out the shortcomings and under-explored, yet key aspects of this field that are necessary to attain true sentiment understanding.
arXiv Detail & Related papers (2020-05-01T13:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.