論文の概要: Reservoir Computing Using Complex Systems
- arxiv url: http://arxiv.org/abs/2212.11141v1
- Date: Sat, 17 Dec 2022 00:25:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 13:44:37.612925
- Title: Reservoir Computing Using Complex Systems
- Title(参考訳): 複雑系を用いた貯留層計算
- Authors: N. Rasha Shanaz, K. Murali, P. Muruganandam
- Abstract要約: Reservoir Computingは、物理システムを利用した計算のための機械学習フレームワークである。
計算に単一ノード貯水池を用いる方法を示し、物理貯水池の計算能力を改善するために利用可能な選択肢を探索する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reservoir Computing is an emerging machine learning framework which is a
versatile option for utilising physical systems for computation. In this paper,
we demonstrate how a single node reservoir, made of a simple electronic
circuit, can be employed for computation and explore the available options to
improve the computational capability of the physical reservoirs. We build a
reservoir computing system using a memristive chaotic oscillator as the
reservoir. We choose two of the available hyperparameters to find the optimal
working regime for the reservoir, resulting in two reservoir versions. We
compare the performance of both the reservoirs in a set of three non-temporal
tasks: approximating two non-chaotic polynomials and a chaotic trajectory of
the Lorenz time series. We also demonstrate how the dynamics of the physical
system plays a direct role in the reservoir's hyperparameters and hence in the
reservoir's prediction ability.
- Abstract(参考訳): Reservoir Computingは、計算に物理システムを利用するための汎用的な選択肢である、新興の機械学習フレームワークである。
本稿では,単純な電子回路で構成した単一ノード貯留層を計算に利用し,物理貯留層の計算能力を向上させるための利用可能な選択肢について検討する。
貯留層としてのカオス発振器を用いた貯水池計算システムを構築した。
利用可能な2つのハイパーパラメータを選択して、貯水池の最適動作状態を見つけ、結果として2つの貯水池バージョンを得る。
2つの非カオス多項式の近似とロレンツ時系列のカオス軌道という3つの非時間的タスクにおける両貯水池の性能を比較する。
また,貯水池のハイパーパラメータと貯水池の予測能力において,物理系のダイナミクスが直接的に果たす役割を実証する。
関連論文リスト
- Stochastic Reservoir Computers [0.0]
貯水池計算では、貯水池のコンピュータ全体の異なる状態の数は、貯水池のハードウェアのサイズに比例して指数関数的にスケールすることができる。
ショットノイズは貯水池計算の性能に限界があるが,ノイズの影響が小さい場合,類似のハードウェアを持つ貯水池コンピュータに比べて性能が大幅に向上した。
論文 参考訳(メタデータ) (2024-05-20T21:26:00Z) - QuantumReservoirPy: A Software Package for Time Series Prediction [44.99833362998488]
我々は、量子貯水池が共通の構造に合うようにするためのソフトウェアパッケージを開発した。
本パッケージは, 量子貯水池構造の比較法の開発を簡略化し, 論理的手法を提示する。
論文 参考訳(メタデータ) (2024-01-19T13:31:29Z) - Reservoir computing with logistic map [0.0]
本稿では,仮想ノードを貯水池計算の貯水池として構築し,時間的・非時間的タスクを予測する手法を示す。
時間的タスクに対してはLorenz, Rossler, Hindmarsh-Roseの3つの非線形系を予測し, 高精度な非時間的タスクに対しては7位とした。
注目すべきは、ロジスティックマップがうまく機能し、実際の値や対象値に近いものを予測することである。
論文 参考訳(メタデータ) (2024-01-17T09:22:15Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - AdaPool: Exponential Adaptive Pooling for Information-Retaining
Downsampling [82.08631594071656]
畳み込み層は畳み込みニューラルネットワーク(CNN)の重要な構成要素である
適応的で指数関数的に重み付けされたアダプール法を提案する。
adaPoolは画像やビデオの分類やオブジェクト検出など,さまざまなタスクを通じて,ディテールの保存性の向上を実証する。
論文 参考訳(メタデータ) (2021-11-01T08:50:37Z) - Task Agnostic Metrics for Reservoir Computing [0.0]
物理貯水池計算は、物理物質における時間的パターン認識を可能にする計算パラダイムである。
選択された力学系は、非線形性、複雑性、暗くなるメモリの3つの望ましい特性を持つ必要がある。
一般に, 減衰率の低いシステムは, 3つの評価指標すべてにおいて高い値に達することが示されている。
論文 参考訳(メタデータ) (2021-08-03T13:58:11Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
有限非線形力学系を無限線型力学系(埋め込み)にマッピングする方法を述べる。
次に、有限線型系 (truncation) による結果の無限線型系を近似するアプローチを検討する。
論文 参考訳(メタデータ) (2020-12-12T00:01:10Z) - Insight into Delay Based Reservoir Computing via Eigenvalue Analysis [0.0]
この方法で貯水池として用いられる力学系を解析できることを示す。
固有値が0に近い実部と非共振虚部を持つ系に対して最適性能を求める。
論文 参考訳(メタデータ) (2020-09-16T20:41:47Z) - The Computational Capacity of LRC, Memristive and Hybrid Reservoirs [1.657441317977376]
貯留層計算(Reservoir computing)は、高次元力学系(enmphreservoir)を用いて時系列データを近似し予測する機械学習パラダイムである。
本稿では, 線形素子(抵抗素子, インダクタ, コンデンサ)と非線形メモリ素子(メムリスタ)の両方を含む電子貯水池の実現可能性と最適設計について分析する。
我々の電子貯水池は、従来の「エコステートネットワーク」貯水池の性能と直接ハードウェアで実装される形で一致または超過することができる。
論文 参考訳(メタデータ) (2020-08-31T21:24:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。