The inflation hierarchy and the polarization hierarchy are complete for
the quantum bilocal scenario
- URL: http://arxiv.org/abs/2212.11299v2
- Date: Fri, 26 May 2023 15:34:56 GMT
- Title: The inflation hierarchy and the polarization hierarchy are complete for
the quantum bilocal scenario
- Authors: Laurens T. Ligthart and David Gross
- Abstract summary: We show that the quantum inflation hierarchy is complete for the bilocal scenario in the commuting observables model of locality.
We also give a bilocal version of an observation by Tsirelson, namely that in finite dimensions, the commuting observables model and the tensor product model of locality coincide.
- Score: 1.9798034349981157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is a fundamental but difficult problem to characterize the set of
correlations that can be obtained by performing measurements on quantum
mechanical systems. The problem is particularly challenging when the
preparation procedure for the quantum states is assumed to comply with a given
causal structure. Recently, a first completeness result for this quantum causal
compatibility problem has been given, based on the so-called quantum inflation
technique. However, completeness was achieved by imposing additional technical
constraints, such as an upper bound on the Schmidt rank of the observables.
Here, we show that these complications are unnecessary in the quantum bilocal
scenario, a much-studied abstract model of entanglement swapping experiments.
We prove that the quantum inflation hierarchy is complete for the bilocal
scenario in the commuting observables model of locality. We also give a bilocal
version of an observation by Tsirelson, namely that in finite dimensions, the
commuting observables model and the tensor product model of locality coincide.
These results answer questions recently posed by Renou and Xu. Finally, we
point out that our techniques can be interpreted more generally as giving rise
to an SDP hierarchy that is complete for the problem of optimizing polynomial
functions in the states of operator algebras defined by generators and
relations. The completeness of this polarization hierarchy follows from a
quantum de Finetti theorem for states on maximal $C^*$-tensor products.
Related papers
- A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Stabilizer entropy of quantum tetrahedra [0.0]
We study the structure of quantum geometry under the lens of stabilizer entropy (SE)
We find that the states of definite volume are singled out by the (near) maximal SE and give precise bounds to the verification protocols for experimental demonstrations on available quantum computers.
arXiv Detail & Related papers (2024-02-12T17:52:51Z) - Quantum Tensor Product Decomposition from Choi State Tomography [0.0]
We present an algorithm for unbalanced partitions into a small subsystem and a large one (the environment) to compute the tensor product decomposition of a unitary.
This quantum algorithm may be used to make predictions about operator non-locality, effective open quantum dynamics on a subsystem, as well as for finding low-rank approximations and low-depth compilations of quantum circuit unitaries.
arXiv Detail & Related papers (2024-02-07T16:36:47Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Experimental study of decoherence of the two-mode squeezed vacuum state
via second harmonic generation [19.5474623165562]
We report a novel scheme on the study of decoherence of a two-mode squeezed vacuum state via its second harmonic generation signal.
Our scheme can directly extract the decoherence of the phase-sensitive quantum correlation $langle hatahatbrangle$ between two entangled modes.
This is an experimental study on the decoherence effect of a squeezed vacuum state, which has been rarely investigated.
arXiv Detail & Related papers (2020-12-22T05:38:24Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum fluctuations of the compact phase space cosmology [0.0]
This article applies effective methods to extract semi-classical regime of quantum dynamics.
We find a nontrivial behavior of the fluctuations around the recollapse of the universe.
An unexpected relation between the quantum fluctuations of the cosmological sector and the holographic Bousso bound is shown.
arXiv Detail & Related papers (2020-03-18T10:08:11Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.