論文の概要: Multi Lane Detection
- arxiv url: http://arxiv.org/abs/2212.11533v3
- Date: Thu, 30 Mar 2023 10:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 17:21:48.708255
- Title: Multi Lane Detection
- Title(参考訳): マルチレーン検出
- Authors: Fei Wu and Luoyu Chen
- Abstract要約: 車線検出は自動運転の基本モジュールである。
私たちの仕事はCNNのバックボーンDLA-34とAffinity Fieldsをベースにしています。
より効率的な車線検出アルゴリズムを実現するための新しい復号法について検討する。
- 参考スコア(独自算出の注目度): 12.684545950979187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane detection is a long-standing task and a basic module in autonomous
driving. The task is to detect the lane of the current driving road, and
provide relevant information such as the ID, direction, curvature, width,
length, with visualization. Our work is based on CNN backbone DLA-34, along
with Affinity Fields, aims to achieve robust detection of various lanes without
assuming the number of lanes. Besides, we investigate novel decoding methods to
achieve more efficient lane detection algorithm.
- Abstract(参考訳): 車線検出は長年の課題であり、自動運転の基本モジュールである。
課題は、現在の運転道路の車線を検知し、ID、方向、曲率、幅、長さなどの関連情報と視覚化を提供することである。
我々の研究は、CNNのバックボーンDLA-34とアフィニティ・フィールズ(Affinity Fields)をベースとし、車線数を仮定することなく、様々な車線を頑健に検出することを目的としている。
さらに,より効率的な車線検出アルゴリズムを実現するための新しい復号法について検討する。
関連論文リスト
- Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
車線検出は自律運転認識システムにおいて重要な役割を果たす。
ディープラーニングアルゴリズムが普及するにつれて、ディープラーニングに基づく単眼車線検出手法が優れた性能を示した。
本稿では, 成熟度の高い2次元車線検出手法と開発途上国の3次元車線検出技術の両方を網羅して, 既存手法の概要を概説する。
論文 参考訳(メタデータ) (2024-11-25T12:09:43Z) - ENet-21: An Optimized light CNN Structure for Lane Detection [1.4542411354617986]
本研究では,車線検出問題に対する最適構造について検討する。
現代の車両の運転支援機能には有望なソリューションを提供する。
TuSimpleデータセットの実験は提案手法の有効性を支持する。
論文 参考訳(メタデータ) (2024-03-28T19:07:26Z) - LaneSegNet: Map Learning with Lane Segment Perception for Autonomous
Driving [60.55208681215818]
道路構造の完全な表現を得るために,レーンセグメントを生成する最初のエンドツーエンドマッピングネットワークであるLaneSegNetを紹介した。
提案アルゴリズムは2つの重要な修正点を特徴としている。1つは、長距離特徴空間内の重要な領域の詳細をキャプチャするレーンアテンションモジュールである。
OpenLane-V2データセットでは、LaneSegNetは3つのタスクにまたがって大幅に向上している。
論文 参考訳(メタデータ) (2023-12-26T16:22:10Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - RCLane: Relay Chain Prediction for Lane Detection [76.62424079494285]
本稿では,リレーチェーン予測に基づく車線検出手法を提案する。
当社の戦略では,TuSimple,CULane,CurveLanes,LLAMASの4つの主要なベンチマーク上で,最先端の新たなベンチマークを確立することが可能です。
論文 参考訳(メタデータ) (2022-07-19T16:48:39Z) - PersFormer: 3D Lane Detection via Perspective Transformer and the
OpenLane Benchmark [109.03773439461615]
PersFormerは、新しいトランスフォーマーベースの空間特徴変換モジュールを備えた、エンドツーエンドのモノクル3Dレーン検出器である。
高品質なアノテーションとシナリオの多様性を備えたOpenLaneと呼ばれる,最初の大規模な3Dレーンデータセットの1つをリリースしました。
論文 参考訳(メタデータ) (2022-03-21T16:12:53Z) - Laneformer: Object-aware Row-Column Transformers for Lane Detection [96.62919884511287]
Laneformerは、自動運転における車線検出に適したトランスフォーマーベースのアーキテクチャである。
様々な視覚タスクにおけるトランスフォーマーエンコーダ・デコーダアーキテクチャの最近の進歩に触発されて、我々は新しいエンドツーエンドのLaneformerアーキテクチャの設計を進める。
論文 参考訳(メタデータ) (2022-03-18T10:14:35Z) - RONELDv2: A faster, improved lane tracking method [1.3965477771846408]
車線検出は、自動運転車や車線出発警報システムにおいて、制御システムの不可欠な部分である。
本稿では,改良された軽量車線検出手法 RONELDv2を提案する。
提案した改良モデルを用いた実験では、異なるデータセットとディープラーニングモデル間でレーン検出精度が一貫した向上を示した。
論文 参考訳(メタデータ) (2022-02-26T13:12:09Z) - Lane Detection Model Based on Spatio-Temporal Network With Double
Convolutional Gated Recurrent Units [11.968518335236787]
レーン検出は今後しばらくは未解決の問題として残るだろう。
二重円錐 Gated Recurrent Units (ConvGRUs) を用いた時空間ネットワークは、困難なシーンにおける車線検出に対処することを提案した。
我々のモデルは最先端の車線検出モデルより優れている。
論文 参考訳(メタデータ) (2020-08-10T06:50:48Z) - Multi-lane Detection Using Instance Segmentation and Attentive Voting [0.0]
本稿では,精度と速度の両面で技術手法の状態を上回り,マルチレーン検出のための新しい手法を提案する。
54.53 fps(平均)で走行する車線分割精度99.87%を得ることができる。
論文 参考訳(メタデータ) (2020-01-01T16:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。