論文の概要: ENet-21: An Optimized light CNN Structure for Lane Detection
- arxiv url: http://arxiv.org/abs/2403.19782v2
- Date: Tue, 6 Aug 2024 21:14:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 17:20:23.133352
- Title: ENet-21: An Optimized light CNN Structure for Lane Detection
- Title(参考訳): ENet-21 レーン検出のための最適化光CNN構造
- Authors: Seyed Rasoul Hosseini, Hamid Taheri, Mohammad Teshnehlab,
- Abstract要約: 本研究では,車線検出問題に対する最適構造について検討する。
現代の車両の運転支援機能には有望なソリューションを提供する。
TuSimpleデータセットの実験は提案手法の有効性を支持する。
- 参考スコア(独自算出の注目度): 1.4542411354617986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane detection for autonomous vehicles is an important concept, yet it is a challenging issue of driver assistance systems in modern vehicles. The emergence of deep learning leads to significant progress in self-driving cars. Conventional deep learning-based methods handle lane detection problems as a binary segmentation task and determine whether a pixel belongs to a line. These methods rely on the assumption of a fixed number of lanes, which does not always work. This study aims to develop an optimal structure for the lane detection problem, offering a promising solution for driver assistance features in modern vehicles by utilizing a machine learning method consisting of binary segmentation and Affinity Fields that can manage varying numbers of lanes and lane change scenarios. In this approach, the Convolutional Neural Network (CNN), is selected as a feature extractor, and the final output is obtained through clustering of the semantic segmentation and Affinity Field outputs. Our method uses less complex CNN architecture than existing ones. Experiments on the TuSimple dataset support the effectiveness of the proposed method.
- Abstract(参考訳): 自動運転車の車線検出は重要な概念であるが、現代の車両における運転支援システムの課題である。
ディープラーニングの出現は、自動運転車の大幅な進歩につながります。
従来のディープ・ラーニング・ベースの手法では、レーン検出問題をバイナリ・セグメンテーション・タスクとして扱い、ピクセルがラインに属しているかどうかを判定する。
これらの手法は固定数の車線の仮定に依存するが、必ずしもうまくいかない。
本研究の目的は,車線検出問題に対する最適構造の構築であり,車線や車線変更シナリオの多様さを管理するための二分セグメンテーションとアフィニティフィールドからなる機械学習手法を用いて,現代の車両における運転支援機能に有望なソリューションを提供することである。
このアプローチでは、特徴抽出器として畳み込みニューラルネットワーク(CNN)が選択され、セマンティックセグメンテーションとアフィニティフィールドの出力をクラスタリングすることで最終的な出力が得られる。
我々の手法は既存のものよりも複雑なCNNアーキテクチャを使用する。
TuSimpleデータセットの実験は提案手法の有効性を支持する。
関連論文リスト
- Cross Dataset Analysis and Network Architecture Repair for Autonomous
Car Lane Detection [5.428120316375907]
自動運転車の車線検出アプリケーションにおいて,クロスデータセット解析とネットワークアーキテクチャの修復を行った。
ERFCondLaneNetは、複雑なトポロジを持つ車線検出の難しさを解決するために車線識別フレームワークとして使用されるCondlaneNetの拡張である。
論文 参考訳(メタデータ) (2024-09-10T20:27:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Multi Lane Detection [12.684545950979187]
車線検出は自動運転の基本モジュールである。
私たちの仕事はCNNのバックボーンDLA-34とAffinity Fieldsをベースにしています。
より効率的な車線検出アルゴリズムを実現するための新しい復号法について検討する。
論文 参考訳(メタデータ) (2022-12-22T08:20:08Z) - RCLane: Relay Chain Prediction for Lane Detection [76.62424079494285]
本稿では,リレーチェーン予測に基づく車線検出手法を提案する。
当社の戦略では,TuSimple,CULane,CurveLanes,LLAMASの4つの主要なベンチマーク上で,最先端の新たなベンチマークを確立することが可能です。
論文 参考訳(メタデータ) (2022-07-19T16:48:39Z) - Laneformer: Object-aware Row-Column Transformers for Lane Detection [96.62919884511287]
Laneformerは、自動運転における車線検出に適したトランスフォーマーベースのアーキテクチャである。
様々な視覚タスクにおけるトランスフォーマーエンコーダ・デコーダアーキテクチャの最近の進歩に触発されて、我々は新しいエンドツーエンドのLaneformerアーキテクチャの設計を進める。
論文 参考訳(メタデータ) (2022-03-18T10:14:35Z) - RONELDv2: A faster, improved lane tracking method [1.3965477771846408]
車線検出は、自動運転車や車線出発警報システムにおいて、制御システムの不可欠な部分である。
本稿では,改良された軽量車線検出手法 RONELDv2を提案する。
提案した改良モデルを用いた実験では、異なるデータセットとディープラーニングモデル間でレーン検出精度が一貫した向上を示した。
論文 参考訳(メタデータ) (2022-02-26T13:12:09Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z) - Lane Detection Model Based on Spatio-Temporal Network With Double
Convolutional Gated Recurrent Units [11.968518335236787]
レーン検出は今後しばらくは未解決の問題として残るだろう。
二重円錐 Gated Recurrent Units (ConvGRUs) を用いた時空間ネットワークは、困難なシーンにおける車線検出に対処することを提案した。
我々のモデルは最先端の車線検出モデルより優れている。
論文 参考訳(メタデータ) (2020-08-10T06:50:48Z) - CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive
Point Blending [102.98909328368481]
CurveLane-NASは、レーンに敏感なアーキテクチャ検索フレームワークである。
長距離コヒーレントと正確な短距離曲線情報の両方をキャプチャする。
点ブレンディングによる曲線線予測において、アーキテクチャ探索と後処理の両方を統一する。
論文 参考訳(メタデータ) (2020-07-23T17:23:26Z) - Multi-lane Detection Using Instance Segmentation and Attentive Voting [0.0]
本稿では,精度と速度の両面で技術手法の状態を上回り,マルチレーン検出のための新しい手法を提案する。
54.53 fps(平均)で走行する車線分割精度99.87%を得ることができる。
論文 参考訳(メタデータ) (2020-01-01T16:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。