論文の概要: DaDe: Delay-adoptive Detector for Streaming Perception
- arxiv url: http://arxiv.org/abs/2212.11558v1
- Date: Thu, 22 Dec 2022 09:25:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 13:51:07.553957
- Title: DaDe: Delay-adoptive Detector for Streaming Perception
- Title(参考訳): DaDe: ストリーミング知覚のための遅延適応検出器
- Authors: Wonwoo Jo, Kyungshin Lee, Jaewon Baik, Sangsun Lee, Dongho Choi,
Hyunkyoo Park
- Abstract要約: リアルタイム環境では、処理が終了すると周囲環境が変化する。
リアルタイム映像認識のレイテンシと精度を評価するために,ストリーム認識を提案する。
我々は,処理遅延をリアルタイムに反映し,最も合理的な結果が得られるモデルを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recognizing the surrounding environment at low latency is critical in
autonomous driving. In real-time environment, surrounding environment changes
when processing is over. Current detection models are incapable of dealing with
changes in the environment that occur after processing. Streaming perception is
proposed to assess the latency and accuracy of real-time video perception.
However, additional problems arise in real-world applications due to limited
hardware resources, high temperatures, and other factors. In this study, we
develop a model that can reflect processing delays in real time and produce the
most reasonable results. By incorporating the proposed feature queue and
feature select module, the system gains the ability to forecast specific time
steps without any additional computational costs. Our method is tested on the
Argoverse-HD dataset. It achieves higher performance than the current
state-of-the-art methods(2022.10) in various environments when delayed . The
code is available at https://github.com/danjos95/DADE
- Abstract(参考訳): 低レイテンシでの環境認識は、自動運転において重要である。
リアルタイム環境では、処理が終了すると周囲環境が変化する。
現在の検出モデルは、処理後に発生する環境の変化を扱うことができない。
リアルタイム映像認識のレイテンシと精度を評価するために,ストリーム認識を提案する。
しかし、ハードウェアリソースの制限、高温、その他の要因により、現実世界のアプリケーションで追加の問題が発生する。
本研究では,処理遅延をリアルタイムに反映し,最も合理的な結果が得られるモデルを開発した。
提案する機能キューと機能選択モジュールを組み込むことで,計算コストを伴わずに特定の時間ステップを予測することができる。
本手法はArgoverse-HDデータセットで検証する。
遅延時には、様々な環境で現在の最先端メソッド(2022.10)よりも高いパフォーマンスを達成する。
コードはhttps://github.com/danjos95/DADEで入手できる。
関連論文リスト
- SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
学習に基づく手法は、合成データにもとづいても、新しい実世界のデータに基づいてGCC-PHATを著しく上回り得ることを示す。
トレーニングされたモデルであるSONNETは、リアルタイムに実行可能で、多くの実データアプリケーションのために、最初から新しいデータに取り組んでいます。
論文 参考訳(メタデータ) (2024-11-20T10:23:21Z) - MTD: Multi-Timestep Detector for Delayed Streaming Perception [0.5439020425819]
ストリーミング知覚は、自律運転システムの遅延と精度を評価するために使用される、世界の現在の状態を報告するタスクである。
本稿では,マルチブランチ将来の予測に動的ルーティングを利用するエンドツーエンド検出器MTDを提案する。
提案手法はArgoverse-HDデータセットを用いて評価され,実験結果から,様々な遅延設定における最先端性能が得られたことが示された。
論文 参考訳(メタデータ) (2023-09-13T06:23:58Z) - Leveraging the Edge and Cloud for V2X-Based Real-Time Object Detection
in Autonomous Driving [0.0]
環境認識は自動運転の重要な要素である。
本稿では,自動運転車のリアルタイム認識における検出品質と遅延の最良のトレードオフについて検討する。
我々は,局所的な検出性能を向上しつつ,適切な圧縮を伴うモデルをクラウド上でリアルタイムに実行可能であることを示す。
論文 参考訳(メタデータ) (2023-08-09T21:39:10Z) - Neural Laplace Control for Continuous-time Delayed Systems [76.81202657759222]
本稿では,ニューラルラプラス力学モデルとモデル予測制御(MPC)プランナを組み合わせた連続時間モデルに基づくオフラインRL法を提案する。
専門家の政策性能に近い連続的な遅延環境を実験的に示す。
論文 参考訳(メタデータ) (2023-02-24T12:40:28Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
ストリーミング知覚は,ビデオオンライン知覚の1つの指標として,レイテンシと精度を共同評価するために提案される。
ストリーミング知覚のためのシンプルで効果的なフレームワークを構築します。
提案手法はArgoverse-HDデータセット上での競合性能を実現し,強力なベースラインに比べてAPを4.9%向上させる。
論文 参考訳(メタデータ) (2022-03-23T11:33:27Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - Object-based Illumination Estimation with Rendering-aware Neural
Networks [56.01734918693844]
個々の物体とその局所画像領域のRGBD外観から高速環境光推定手法を提案する。
推定照明により、仮想オブジェクトは実際のシーンと一貫性のあるシェーディングでARシナリオでレンダリングできる。
論文 参考訳(メタデータ) (2020-08-06T08:23:19Z) - Non-Stationary Delayed Bandits with Intermediate Observations [10.538264213183076]
オンラインレコメンデータシステムは、特に長期的なメトリクスを最適化する場合、フィードバックを受け取るのに長い遅延に直面します。
中間観測による非定常遅延帯域の問題を紹介する。
UCRLに基づく効率的なアルゴリズムを開発し,その性能に対するサブ線形後悔保証を証明した。
論文 参考訳(メタデータ) (2020-06-03T09:27:03Z) - Towards Streaming Perception [70.68520310095155]
本稿では、リアルタイムオンライン知覚のための単一のメトリクスにレイテンシと精度を協調的に統合するアプローチを提案する。
この指標の背後にある重要な洞察は、瞬間ごとに認識スタック全体の出力を共同で評価することである。
本稿では,都市ビデオストリームにおけるオブジェクト検出とインスタンスセグメンテーションの具体的タスクに注目し,高品質で時間依存的なアノテーションを備えた新しいデータセットを寄贈する。
論文 参考訳(メタデータ) (2020-05-21T01:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。