論文の概要: The State of the Art in Enhancing Trust in Machine Learning Models with
the Use of Visualizations
- arxiv url: http://arxiv.org/abs/2212.11737v1
- Date: Thu, 22 Dec 2022 14:29:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 14:18:02.905614
- Title: The State of the Art in Enhancing Trust in Machine Learning Models with
the Use of Visualizations
- Title(参考訳): 可視化を用いた機械学習モデルにおける信頼を高める技術の現状
- Authors: A. Chatzimparmpas, R. Martins, I. Jusufi, K. Kucher, Fabrice Rossi
(CEREMADE), A. Kerren
- Abstract要約: 機械学習(ML)モデルは、医学、バイオインフォマティクス、その他の科学など、様々な分野の複雑な応用で使われている。
しかし、ブラックボックスの性質のため、それらが提供する結果を理解し、信頼することは難しいこともある。
これにより、MLモデルの信頼性向上に関連する信頼性の高い視覚化ツールの需要が増加した。
本稿では,インタラクティブな可視化によるMLモデルの信頼性向上について,STAR(State-of-the-Art Report)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) models are nowadays used in complex applications in
various domains, such as medicine, bioinformatics, and other sciences. Due to
their black box nature, however, it may sometimes be hard to understand and
trust the results they provide. This has increased the demand for reliable
visualization tools related to enhancing trust in ML models, which has become a
prominent topic of research in the visualization community over the past
decades. To provide an overview and present the frontiers of current research
on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in
ML models with the use of interactive visualization. We define and describe the
background of the topic, introduce a categorization for visualization
techniques that aim to accomplish this goal, and discuss insights and
opportunities for future research directions. Among our contributions is a
categorization of trust against different facets of interactive ML, expanded
and improved from previous research. Our results are investigated from
different analytical perspectives: (a) providing a statistical overview, (b)
summarizing key findings, (c) performing topic analyses, and (d) exploring the
data sets used in the individual papers, all with the support of an interactive
web-based survey browser. We intend this survey to be beneficial for
visualization researchers whose interests involve making ML models more
trustworthy, as well as researchers and practitioners from other disciplines in
their search for effective visualization techniques suitable for solving their
tasks with confidence and conveying meaning to their data.
- Abstract(参考訳): 機械学習(ML)モデルは、医学、バイオインフォマティクス、その他の科学など、様々な分野の複雑な応用で使われている。
しかし、ブラックボックスの性質のため、それらが提供する結果を理解し信頼することは難しいこともある。
これにより、MLモデルの信頼性向上に関連する信頼性の高い視覚化ツールの需要が増大し、この数十年、可視化コミュニティにおける研究の目玉となった。
このトピックに関する現在の研究のフロンティアを概観するとともに,インタラクティブな可視化によるMLモデルの信頼性向上に関するState-of-the-Art Report(STAR)を提示する。
トピックの背景を定義し,その目的を達成するための可視化手法の分類を導入し,今後の研究方向性に対する洞察と機会について議論する。
私たちの貢献は、インタラクティブMLのさまざまな側面に対する信頼の分類であり、以前の研究から拡張および改善されています。
分析の結果は 異なる視点から調べられました
(a)統計的概要を提供する
b)重要な発見を要約すること
(c)話題分析を行う、及び
(d) 対話型Webベースのサーベイブラウザのサポートにより,個々の論文で使用されるデータセットを探索する。
この調査は、MLモデルをより信頼できるものにすることに関心のある視覚化研究者や、他の分野の研究者や実践者が、タスクを信頼性を持って解決し、データに意味を伝えるのに適した効果的な視覚化手法を探索する上で有益である。
関連論文リスト
- AiSciVision: A Framework for Specializing Large Multimodal Models in Scientific Image Classification [2.4515373478215343]
対話型研究パートナーにLMM(Large Multimodal Models)を専門とするフレームワークであるAiSciVisionを紹介する。
私たちのフレームワークでは、Visual Retrieval-Augmented Generation (VisRAG) と、エージェントワークフローで使用されるドメイン固有のツールの2つの重要なコンポーネントを使用します。
AiSciVisionを3つの実世界の科学的画像分類データセット(養殖池、ウナギ、ソーラーパネル)で評価した。
論文 参考訳(メタデータ) (2024-10-28T19:35:47Z) - Exploring the Effectiveness of Object-Centric Representations in Visual Question Answering: Comparative Insights with Foundation Models [24.579822095003685]
下流視覚質問応答(VQA)における表現学習に関する実証的研究を行った。
我々はOCモデルと代替アプローチの利点とトレードオフを徹底的に検討する。
論文 参考訳(メタデータ) (2024-07-22T12:26:08Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
仮面モデリングは、トレーニング中に比例的にマスキングされる元のデータの一部を予測する、独特なアプローチとして現れてきた。
マスクモデリングにおけるテクニックの詳細については,多様なマスキング戦略,ターゲット回復,ネットワークアーキテクチャなどについて詳述する。
我々は、現在の手法の限界について議論し、マスクモデリング研究を進めるためのいくつかの道のりを指摘した。
論文 参考訳(メタデータ) (2023-12-31T12:03:21Z) - Multimodal Deep Learning for Scientific Imaging Interpretation [0.0]
本研究では,SEM(Scanning Electron Microscopy)画像と人間のような相互作用を言語的にエミュレートし,評価するための新しい手法を提案する。
本稿では,ピアレビュー記事から収集したテキストデータとビジュアルデータの両方から洞察を抽出する。
我々のモデル (GlassLLaVA) は, 正確な解釈, 重要な特徴の同定, 未確認のSEM画像の欠陥の検出に優れる。
論文 参考訳(メタデータ) (2023-09-21T20:09:22Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
本稿では,マルチヘッド自己注意と最終MRCシステム性能の関係を検討するために,一連の解析実験を実施することに焦点を当てる。
問合せ及び問合せ理解の注意が問合せプロセスにおいて最も重要なものであることが判明した。
包括的可視化とケーススタディを通じて、注意マップに関するいくつかの一般的な知見も観察し、これらのモデルがどのように問題を解くかを理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-08-26T04:23:57Z) - Visual Relationship Detection with Visual-Linguistic Knowledge from
Multimodal Representations [103.00383924074585]
視覚的関係検出は、画像内の有能なオブジェクト間の関係を推論することを目的としている。
変換器からの視覚言語表現(RVL-BERT)という新しい手法を提案する。
RVL-BERTは、自己教師付き事前学習を通じて学習した視覚的・言語的常識知識を用いて空間推論を行う。
論文 参考訳(メタデータ) (2020-09-10T16:15:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。