論文の概要: Multimodal Deep Learning for Scientific Imaging Interpretation
- arxiv url: http://arxiv.org/abs/2309.12460v2
- Date: Mon, 25 Sep 2023 23:11:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 17:05:10.164192
- Title: Multimodal Deep Learning for Scientific Imaging Interpretation
- Title(参考訳): 科学画像解釈のためのマルチモーダル深層学習
- Authors: Abdulelah S. Alshehri, Franklin L. Lee, Shihu Wang
- Abstract要約: 本研究では,SEM(Scanning Electron Microscopy)画像と人間のような相互作用を言語的にエミュレートし,評価するための新しい手法を提案する。
本稿では,ピアレビュー記事から収集したテキストデータとビジュアルデータの両方から洞察を抽出する。
我々のモデル (GlassLLaVA) は, 正確な解釈, 重要な特徴の同定, 未確認のSEM画像の欠陥の検出に優れる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the domain of scientific imaging, interpreting visual data often demands
an intricate combination of human expertise and deep comprehension of the
subject materials. This study presents a novel methodology to linguistically
emulate and subsequently evaluate human-like interactions with Scanning
Electron Microscopy (SEM) images, specifically of glass materials. Leveraging a
multimodal deep learning framework, our approach distills insights from both
textual and visual data harvested from peer-reviewed articles, further
augmented by the capabilities of GPT-4 for refined data synthesis and
evaluation. Despite inherent challenges--such as nuanced interpretations and
the limited availability of specialized datasets--our model (GlassLLaVA) excels
in crafting accurate interpretations, identifying key features, and detecting
defects in previously unseen SEM images. Moreover, we introduce versatile
evaluation metrics, suitable for an array of scientific imaging applications,
which allows for benchmarking against research-grounded answers. Benefiting
from the robustness of contemporary Large Language Models, our model adeptly
aligns with insights from research papers. This advancement not only
underscores considerable progress in bridging the gap between human and machine
interpretation in scientific imaging, but also hints at expansive avenues for
future research and broader application.
- Abstract(参考訳): 科学イメージングの分野では、視覚データの解釈は、しばしば人間の専門知識と被写体の深い理解の複雑な組み合わせを必要とする。
本研究では,SEM(Scanning Electron Microscopy)画像,特にガラス材料との人間的相互作用を言語的にエミュレートし,評価する新しい手法を提案する。
マルチモーダル・ディープラーニング・フレームワークを活用することで、ピアレビュー記事から収集したテキストデータとビジュアルデータの両方から洞察を抽出し、改良されたデータ合成と評価のためのGPT-4の機能によりさらに強化する。
ニュアンス解釈や特殊なデータセットの可用性の制限など、固有の課題にもかかわらず、正確な解釈、重要な特徴の特定、これまで目にしたことのないsem画像の欠陥の検出に優れています。
さらに,様々な科学的イメージング応用に適した多彩な評価指標を導入し,研究対象の回答に対するベンチマークを行う。
現代の大規模言語モデルの頑健さから、我々のモデルは研究論文の洞察と密接に一致している。
この進歩は、科学的画像における人間と機械の解釈のギャップを埋める上で大きな進歩を示すだけでなく、将来の研究と幅広い応用のための拡大の道のりを示唆している。
関連論文リスト
- Probing the limitations of multimodal language models for chemistry and materials research [3.422786943576035]
実世界の化学や材料科学のタスクを視覚言語モデルがどのように扱うかを評価するためのベンチマークであるMaCBenchを紹介する。
これらのシステムは、基本的な知覚タスクにおいて有望な能力を示すが、空間的推論、クロスモーダル情報合成、論理的推論の基本的な限界を示す。
私たちの洞察は、化学や材料科学以外にも重要な意味を持ち、信頼性の高いマルチモーダルAI科学アシスタントを開発するには、適切なトレーニングデータとそれらのモデルをトレーニングするためのアプローチのキュレーションの進歩が必要であることを示唆している。
論文 参考訳(メタデータ) (2024-11-25T21:51:45Z) - ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
変換器の高度な特徴抽出機能を備えた大規模言語モデルの非並列的文脈理解を融合したアーキテクチャであるARPAを提案する。
ARPAの導入は、視覚的単語の曖昧さにおいて重要なマイルストーンであり、魅力的なソリューションを提供する。
我々は研究者や実践者たちに、このようなハイブリッドモデルが人工知能の先例のない進歩を後押しする未来を想像して、我々のモデルの能力を探求するよう依頼する。
論文 参考訳(メタデータ) (2024-08-12T10:15:13Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
このデータセットには、スキーマ図、シミュレーション画像、マクロ/顕微鏡写真、実験的可視化などの図が含まれている。
我々は,6つのプロプライエタリモデルと10以上のオープンソースモデルを評価し,科学的フィギュアキャプションと複数選択質問のベンチマークを開発した。
データセットとベンチマークは、さらなる研究をサポートするためにリリースされる予定だ。
論文 参考訳(メタデータ) (2024-07-06T00:40:53Z) - SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval [64.03631654052445]
科学領域内の画像テキストペアリングにおけるMMIR性能を評価するための最新のベンチマークは、顕著なギャップを示している。
オープンアクセス用紙コレクションを利用した特殊な科学的MMIRベンチマークを開発する。
このベンチマークは、科学的文書に詳細なキャプションのある数字や表から抽出された、530Kの精巧にキュレートされた画像テキストペアからなる。
論文 参考訳(メタデータ) (2024-01-24T14:23:12Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations [0.0]
機械学習(ML)モデルは、医学、バイオインフォマティクス、その他の科学など、様々な分野の複雑な応用で使われている。
しかし、ブラックボックスの性質のため、それらが提供する結果を理解し、信頼することは難しいこともある。
これにより、MLモデルの信頼性向上に関連する信頼性の高い視覚化ツールの需要が増加した。
本稿では,インタラクティブな可視化によるMLモデルの信頼性向上について,STAR(State-of-the-Art Report)を提案する。
論文 参考訳(メタデータ) (2022-12-22T14:29:43Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
光音響イメージングは医療に革命をもたらす可能性がある。
この技術の臨床的翻訳には、高次元取得したデータを臨床的に関連性があり解釈可能な情報に変換する必要がある。
本稿では,多スペクトル光音響画像のセマンティックセグメンテーションに対する深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-20T09:33:55Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。