Predicting Companies' ESG Ratings from News Articles Using Multivariate
Timeseries Analysis
- URL: http://arxiv.org/abs/2212.11765v1
- Date: Sun, 13 Nov 2022 11:23:02 GMT
- Title: Predicting Companies' ESG Ratings from News Articles Using Multivariate
Timeseries Analysis
- Authors: Tanja Aue, Adam Jatowt, Michael F\"arber
- Abstract summary: We build a model to predict ESG ratings from news articles using the combination of multivariate timeseries construction and deep learning techniques.
A news dataset for about 3,000 US companies together with their ratings is also created and released for training.
Our approach provides accurate results outperforming the state-of-the-art, and can be used in practice to support a manual determination or analysis of ESG ratings.
- Score: 17.332692582748408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Environmental, social and governance (ESG) engagement of companies moved into
the focus of public attention over recent years. With the requirements of
compulsory reporting being implemented and investors incorporating
sustainability in their investment decisions, the demand for transparent and
reliable ESG ratings is increasing. However, automatic approaches for
forecasting ESG ratings have been quite scarce despite the increasing
importance of the topic. In this paper, we build a model to predict ESG ratings
from news articles using the combination of multivariate timeseries
construction and deep learning techniques. A news dataset for about 3,000 US
companies together with their ratings is also created and released for
training. Through the experimental evaluation we find out that our approach
provides accurate results outperforming the state-of-the-art, and can be used
in practice to support a manual determination or analysis of ESG ratings.
Related papers
- ESG-FTSE: A corpus of news articles with ESG relevance labels and use cases [1.3937696730884712]
We present ESG-FTSE, the first corpus comprised of news articles with Environmental, Social and Governance (ESG) relevance annotations.
This has led to the rise of ESG scores to evaluate an investment's credentials as socially responsible.
Quantitative techniques can be applied to improve ESG scores, thus, responsible investing.
arXiv Detail & Related papers (2024-05-30T16:19:02Z) - Unveiling the Achilles' Heel of NLG Evaluators: A Unified Adversarial Framework Driven by Large Language Models [52.368110271614285]
We introduce AdvEval, a novel black-box adversarial framework against NLG evaluators.
AdvEval is specially tailored to generate data that yield strong disagreements between human and victim evaluators.
We conduct experiments on 12 victim evaluators and 11 NLG datasets, spanning tasks including dialogue, summarization, and question evaluation.
arXiv Detail & Related papers (2024-05-23T14:48:15Z) - A Closer Look into Automatic Evaluation Using Large Language Models [75.49360351036773]
We discuss how details in the evaluation process change how well the ratings given by LLMs correlate with human ratings.
We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings.
We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal.
arXiv Detail & Related papers (2023-10-09T12:12:55Z) - Glitter or Gold? Deriving Structured Insights from Sustainability
Reports via Large Language Models [16.231171704561714]
This study uses Information Extraction (IE) methods to extract structured insights related to ESG aspects from companies' sustainability reports.
We then leverage graph-based representations to conduct statistical analyses concerning the extracted insights.
arXiv Detail & Related papers (2023-10-09T11:34:41Z) - Creating a Systematic ESG (Environmental Social Governance) Scoring
System Using Social Network Analysis and Machine Learning for More
Sustainable Company Practices [0.0]
This project aims to create a data-driven ESG evaluation system that can provide better guidance and more systemized scores by incorporating social sentiment.
Python web scrapers were developed to collect data from Wikipedia, Twitter, LinkedIn, and Google News for the S&P 500 companies.
Machine-learning algorithms were trained and calibrated to S&P Global ESG Ratings to test their predictive capabilities.
arXiv Detail & Related papers (2023-09-07T20:03:45Z) - Consistency Analysis of ChatGPT [65.268245109828]
This paper investigates the trustworthiness of ChatGPT and GPT-4 regarding logically consistent behaviour.
Our findings suggest that while both models appear to show an enhanced language understanding and reasoning ability, they still frequently fall short of generating logically consistent predictions.
arXiv Detail & Related papers (2023-03-11T01:19:01Z) - ESGBERT: Language Model to Help with Classification Tasks Related to
Companies Environmental, Social, and Governance Practices [0.0]
Non-financial factors such as environmental, social, and governance (ESG) are attracting attention from investors.
We see a need for sophisticated NLP techniques for classification tasks for ESG text.
We explore doing this by fine-tuning BERTs pre-trained weights using ESG specific text and then further fine-tuning the model for a classification task.
arXiv Detail & Related papers (2022-03-31T04:22:44Z) - SustainBench: Benchmarks for Monitoring the Sustainable Development
Goals with Machine Learning [63.192289553021816]
Progress toward the United Nations Sustainable Development Goals has been hindered by a lack of data on key environmental and socioeconomic indicators.
Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media.
In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs.
arXiv Detail & Related papers (2021-11-08T18:59:04Z) - Heterogeneous Ensemble for ESG Ratings Prediction [1.9659095632676094]
Investors rely on specialized rating agencies that issue ratings along the environmental, social and governance dimensions.
Rating agencies base their analysis on subjective assessment of sustainability reports, not provided by every company.
We propose a heterogeneous ensemble model to predict ESG ratings using fundamental data.
arXiv Detail & Related papers (2021-09-21T10:42:24Z) - The GEM Benchmark: Natural Language Generation, its Evaluation and
Metrics [66.96150429230035]
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics.
Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models.
arXiv Detail & Related papers (2021-02-02T18:42:05Z) - MARS-Gym: A Gym framework to model, train, and evaluate Recommender
Systems for Marketplaces [51.123916699062384]
MARS-Gym is an open-source framework to build and evaluate Reinforcement Learning agents for recommendations in marketplaces.
We provide the implementation of a diverse set of baseline agents, with a metrics-driven analysis of them in the Trivago marketplace dataset.
We expect to bridge the gap between academic research and production systems, as well as to facilitate the design of new algorithms and applications.
arXiv Detail & Related papers (2020-09-30T16:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.