Creating a Systematic ESG (Environmental Social Governance) Scoring
System Using Social Network Analysis and Machine Learning for More
Sustainable Company Practices
- URL: http://arxiv.org/abs/2309.05607v1
- Date: Thu, 7 Sep 2023 20:03:45 GMT
- Title: Creating a Systematic ESG (Environmental Social Governance) Scoring
System Using Social Network Analysis and Machine Learning for More
Sustainable Company Practices
- Authors: Aarav Patel, Peter Gloor
- Abstract summary: This project aims to create a data-driven ESG evaluation system that can provide better guidance and more systemized scores by incorporating social sentiment.
Python web scrapers were developed to collect data from Wikipedia, Twitter, LinkedIn, and Google News for the S&P 500 companies.
Machine-learning algorithms were trained and calibrated to S&P Global ESG Ratings to test their predictive capabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Environmental Social Governance (ESG) is a widely used metric that measures
the sustainability of a company practices. Currently, ESG is determined using
self-reported corporate filings, which allows companies to portray themselves
in an artificially positive light. As a result, ESG evaluation is subjective
and inconsistent across raters, giving executives mixed signals on what to
improve. This project aims to create a data-driven ESG evaluation system that
can provide better guidance and more systemized scores by incorporating social
sentiment. Social sentiment allows for more balanced perspectives which
directly highlight public opinion, helping companies create more focused and
impactful initiatives. To build this, Python web scrapers were developed to
collect data from Wikipedia, Twitter, LinkedIn, and Google News for the S&P 500
companies. Data was then cleaned and passed through NLP algorithms to obtain
sentiment scores for ESG subcategories. Using these features, machine-learning
algorithms were trained and calibrated to S&P Global ESG Ratings to test their
predictive capabilities. The Random-Forest model was the strongest model with a
mean absolute error of 13.4% and a correlation of 26.1% (p-value 0.0372),
showing encouraging results. Overall, measuring ESG social sentiment across
sub-categories can help executives focus efforts on areas people care about
most. Furthermore, this data-driven methodology can provide ratings for
companies without coverage, allowing more socially responsible firms to thrive.
Related papers
- A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look [52.114284476700874]
This paper reports on the results of a large-scale evaluation (the TREC 2024 RAG Track) where four different relevance assessment approaches were deployed.
We find that automatically generated UMBRELA judgments can replace fully manual judgments to accurately capture run-level effectiveness.
Surprisingly, we find that LLM assistance does not appear to increase correlation with fully manual assessments, suggesting that costs associated with human-in-the-loop processes do not bring obvious tangible benefits.
arXiv Detail & Related papers (2024-11-13T01:12:35Z) - Balancing User Preferences by Social Networks: A Condition-Guided Social Recommendation Model for Mitigating Popularity Bias [64.73474454254105]
Social recommendation models weave social interactions into their design to provide uniquely personalized recommendation results for users.
Existing social recommendation models fail to address the issues of popularity bias and the redundancy of social information.
We propose a Condition-Guided Social Recommendation Model (named CGSoRec) to mitigate the model's popularity bias.
arXiv Detail & Related papers (2024-05-27T02:45:01Z) - ESG Sentiment Analysis: comparing human and language model performance
including GPT [0.0]
ESG has grown in importance in recent years with a surge in interest from the financial sector.
The use of sentiment analysis to measure ESG related reputation has developed and with it interest in the use of machines to do so.
Our study seeks to compare human performance with the cutting edge in machine performance in the measurement of ESG related sentiment.
arXiv Detail & Related papers (2024-02-26T15:22:30Z) - ESGReveal: An LLM-based approach for extracting structured data from ESG
reports [5.467389155759699]
ESGReveal is an innovative method proposed for efficiently extracting and analyzing Environmental, Social, and Governance (ESG) data from corporate reports.
This approach utilizes Large Language Models (LLM) enhanced with Retrieval Augmented Generation (RAG) techniques.
Its efficacy was appraised using ESG reports from 166 companies across various sectors listed on the Hong Kong Stock Exchange in 2022.
arXiv Detail & Related papers (2023-12-25T06:44:32Z) - Glitter or Gold? Deriving Structured Insights from Sustainability
Reports via Large Language Models [16.231171704561714]
This study uses Information Extraction (IE) methods to extract structured insights related to ESG aspects from companies' sustainability reports.
We then leverage graph-based representations to conduct statistical analyses concerning the extracted insights.
arXiv Detail & Related papers (2023-10-09T11:34:41Z) - Harnessing the Web and Knowledge Graphs for Automated Impact Investing
Scoring [2.4107880640624706]
We describe a data-driven system that seeks to automate the process of creating an Sustainable Development Goals framework.
We propose a novel method for collecting and filtering a dataset of texts from different web sources and a knowledge graph relevant to a set of companies.
Our results indicate that our best performing model can accurately predict SDG scores with a micro average F1 score of 0.89.
arXiv Detail & Related papers (2023-08-04T15:14:16Z) - Ecosystem Graphs: The Social Footprint of Foundation Models [64.02855828418608]
We propose Ecosystem Graphs as a documentation framework to transparently centralize knowledge of this ecosystem.
Ecosystem Graphs is composed of assets (datasets, models, applications) linked together by dependencies that indicate technical (e.g. how Bing relies on GPT-4) and social (e.g. how Microsoft relies on OpenAI) relationships.
arXiv Detail & Related papers (2023-03-28T07:18:29Z) - Predicting Companies' ESG Ratings from News Articles Using Multivariate
Timeseries Analysis [17.332692582748408]
We build a model to predict ESG ratings from news articles using the combination of multivariate timeseries construction and deep learning techniques.
A news dataset for about 3,000 US companies together with their ratings is also created and released for training.
Our approach provides accurate results outperforming the state-of-the-art, and can be used in practice to support a manual determination or analysis of ESG ratings.
arXiv Detail & Related papers (2022-11-13T11:23:02Z) - Ranking-based Group Identification via Factorized Attention on Social
Tripartite Graph [68.08590487960475]
We propose a novel GNN-based framework named Contextualized Factorized Attention for Group identification (CFAG)
We devise tripartite graph convolution layers to aggregate information from different types of neighborhoods among users, groups, and items.
To cope with the data sparsity issue, we devise a novel propagation augmentation layer, which is based on our proposed factorized attention mechanism.
arXiv Detail & Related papers (2022-11-02T01:42:20Z) - SustainBench: Benchmarks for Monitoring the Sustainable Development
Goals with Machine Learning [63.192289553021816]
Progress toward the United Nations Sustainable Development Goals has been hindered by a lack of data on key environmental and socioeconomic indicators.
Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media.
In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs.
arXiv Detail & Related papers (2021-11-08T18:59:04Z) - Benchmarking Graph Neural Networks [75.42159546060509]
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs.
For any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress.
GitHub repository has reached 1,800 stars and 339 forks, which demonstrates the utility of the proposed open-source framework.
arXiv Detail & Related papers (2020-03-02T15:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.