Heterogeneous Ensemble for ESG Ratings Prediction
- URL: http://arxiv.org/abs/2109.10085v1
- Date: Tue, 21 Sep 2021 10:42:24 GMT
- Title: Heterogeneous Ensemble for ESG Ratings Prediction
- Authors: Tim Krappel, Alex Bogun, Damian Borth
- Abstract summary: Investors rely on specialized rating agencies that issue ratings along the environmental, social and governance dimensions.
Rating agencies base their analysis on subjective assessment of sustainability reports, not provided by every company.
We propose a heterogeneous ensemble model to predict ESG ratings using fundamental data.
- Score: 1.9659095632676094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past years, topics ranging from climate change to human rights have
seen increasing importance for investment decisions. Hence, investors (asset
managers and asset owners) who wanted to incorporate these issues started to
assess companies based on how they handle such topics. For this assessment,
investors rely on specialized rating agencies that issue ratings along the
environmental, social and governance (ESG) dimensions. Such ratings allow them
to make investment decisions in favor of sustainability. However, rating
agencies base their analysis on subjective assessment of sustainability
reports, not provided by every company. Furthermore, due to human labor
involved, rating agencies are currently facing the challenge to scale up the
coverage in a timely manner.
In order to alleviate these challenges and contribute to the overall goal of
supporting sustainability, we propose a heterogeneous ensemble model to predict
ESG ratings using fundamental data. This model is based on feedforward neural
network, CatBoost and XGBoost ensemble members. Given the public availability
of fundamental data, the proposed method would allow cost-efficient and
scalable creation of initial ESG ratings (also for companies without
sustainability reporting). Using our approach we are able to explain 54% of the
variation in ratings R2 using fundamental data and outperform prior work in
this area.
Related papers
- Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models [59.061552498630874]
We introduce the LIVE-Viasat Real-World Satellite QoE Database.
This database consists of 179 videos recorded from real-world streaming services affected by various authentic distortion patterns.
We demonstrate the usefulness of this unique new resource by evaluating the efficacy of QoE-prediction models on it.
We also created a new model that maps the network parameters to predicted human perception scores, which can be used by ISPs to optimize the video streaming quality of their networks.
arXiv Detail & Related papers (2024-10-17T18:22:50Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Bench is a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks.
A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation.
arXiv Detail & Related papers (2024-06-09T12:30:30Z) - When is Off-Policy Evaluation (Reward Modeling) Useful in Contextual Bandits? A Data-Centric Perspective [64.73162159837956]
evaluating the value of a hypothetical target policy with only a logged dataset is important but challenging.
We propose DataCOPE, a data-centric framework for evaluating a target policy given a dataset.
Our empirical analysis of DataCOPE in the logged contextual bandit settings using healthcare datasets confirms its ability to evaluate both machine-learning and human expert policies.
arXiv Detail & Related papers (2023-11-23T17:13:37Z) - Glitter or Gold? Deriving Structured Insights from Sustainability
Reports via Large Language Models [16.231171704561714]
This study uses Information Extraction (IE) methods to extract structured insights related to ESG aspects from companies' sustainability reports.
We then leverage graph-based representations to conduct statistical analyses concerning the extracted insights.
arXiv Detail & Related papers (2023-10-09T11:34:41Z) - OATS: Opinion Aspect Target Sentiment Quadruple Extraction Dataset for
Aspect-Based Sentiment Analysis [55.61047894397937]
Aspect-based sentiment analysis (ABSA) delves into understanding sentiments specific to distinct elements within a user-generated review.
We introduce the OATS dataset, which encompasses three fresh domains and consists of 27,470 sentence-level quadruples and 17,092 review-levels.
Our initiative seeks to bridge specific observed gaps: the recurrent focus on familiar domains like restaurants and laptops, limited data for intricate quadruple extraction tasks, and an occasional oversight of the synergy between sentence and review-level sentiments.
arXiv Detail & Related papers (2023-09-23T07:39:16Z) - Creating a Systematic ESG (Environmental Social Governance) Scoring
System Using Social Network Analysis and Machine Learning for More
Sustainable Company Practices [0.0]
This project aims to create a data-driven ESG evaluation system that can provide better guidance and more systemized scores by incorporating social sentiment.
Python web scrapers were developed to collect data from Wikipedia, Twitter, LinkedIn, and Google News for the S&P 500 companies.
Machine-learning algorithms were trained and calibrated to S&P Global ESG Ratings to test their predictive capabilities.
arXiv Detail & Related papers (2023-09-07T20:03:45Z) - Harnessing the Web and Knowledge Graphs for Automated Impact Investing
Scoring [2.4107880640624706]
We describe a data-driven system that seeks to automate the process of creating an Sustainable Development Goals framework.
We propose a novel method for collecting and filtering a dataset of texts from different web sources and a knowledge graph relevant to a set of companies.
Our results indicate that our best performing model can accurately predict SDG scores with a micro average F1 score of 0.89.
arXiv Detail & Related papers (2023-08-04T15:14:16Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
Existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale.
We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units.
We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems.
arXiv Detail & Related papers (2022-12-15T17:26:05Z) - Predicting Companies' ESG Ratings from News Articles Using Multivariate
Timeseries Analysis [17.332692582748408]
We build a model to predict ESG ratings from news articles using the combination of multivariate timeseries construction and deep learning techniques.
A news dataset for about 3,000 US companies together with their ratings is also created and released for training.
Our approach provides accurate results outperforming the state-of-the-art, and can be used in practice to support a manual determination or analysis of ESG ratings.
arXiv Detail & Related papers (2022-11-13T11:23:02Z) - ESGBERT: Language Model to Help with Classification Tasks Related to
Companies Environmental, Social, and Governance Practices [0.0]
Non-financial factors such as environmental, social, and governance (ESG) are attracting attention from investors.
We see a need for sophisticated NLP techniques for classification tasks for ESG text.
We explore doing this by fine-tuning BERTs pre-trained weights using ESG specific text and then further fine-tuning the model for a classification task.
arXiv Detail & Related papers (2022-03-31T04:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.