論文の概要: A Semantic Framework for Neuro-Symbolic Computing
- arxiv url: http://arxiv.org/abs/2212.12050v5
- Date: Wed, 27 Nov 2024 00:22:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:23:51.934373
- Title: A Semantic Framework for Neuro-Symbolic Computing
- Title(参考訳): ニューロシンボリックコンピューティングのためのセマンティックフレームワーク
- Authors: Simon Odense, Artur d'Avila Garcez,
- Abstract要約: ニューロシンボリックAIの分野は、ニューラルネットワークとシンボリックシステムの組み合わせの恩恵を受けることを目的としている。
エンコーディングの一般的な定義は存在せず、ニューロシンボリック法を正確に理論的に比較することが可能である。
本稿では,ニューロシンボリックAIのセマンティックフレームワークを導入することでこの問題に対処する。
- 参考スコア(独自算出の注目度): 0.36832029288386137
- License:
- Abstract: The field of neuro-symbolic AI aims to benefit from the combination of neural networks and symbolic systems. A cornerstone of the field is the translation or encoding of symbolic knowledge into neural networks. Although many neuro-symbolic methods and approaches have been proposed, and with a large increase in recent years, no common definition of encoding exists that can enable a precise, theoretical comparison of neuro-symbolic methods. This paper addresses this problem by introducing a semantic framework for neuro-symbolic AI. We start by providing a formal definition of semantic encoding, specifying the components and conditions under which a knowledge-base can be encoded correctly by a neural network. We then show that many neuro-symbolic approaches are accounted for by this definition. We provide a number of examples and correspondence proofs applying the proposed framework to the neural encoding of various forms of knowledge representation. Many, at first sight disparate, neuro-symbolic methods, are shown to fall within the proposed formalization. This is expected to provide guidance to future neuro-symbolic encodings by placing them in the broader context of semantic encodings of entire families of existing neuro-symbolic systems. The paper hopes to help initiate a discussion around the provision of a theory for neuro-symbolic AI and a semantics for deep learning.
- Abstract(参考訳): ニューロシンボリックAIの分野は、ニューラルネットワークとシンボリックシステムの組み合わせの恩恵を受けることを目的としている。
この分野の基盤は、記号的知識のニューラルネットワークへの翻訳または符号化である。
多くのニューロシンボリックな方法やアプローチが提案され、近年は大幅に増加しているが、ニューロシンボリックな方法の正確な理論的比較を可能にするエンコーディングの共通定義は存在しない。
本稿では,ニューロシンボリックAIのセマンティックフレームワークを導入することでこの問題に対処する。
まずセマンティックエンコーディングの形式的定義を提供し、ニューラルネットワークによって知識ベースを正しくエンコードできるコンポーネントと条件を指定する。
そして、この定義によって多くのニューロシンボリックアプローチが説明されることを示す。
本稿では,様々な形態の知識表現のニューラルエンコーディングに提案手法を適用した実例と対応証明について述べる。
当初、多くの異なるニューロシンボリックな方法が提案された形式化に該当することが示されている。
これは、既存のニューロシンボリックシステムの全ファミリーのセマンティックエンコーディングのより広い文脈に配置することで、将来のニューロシンボリックエンコーディングへのガイダンスを提供することが期待されている。
この論文は、ニューロシンボリックAIの理論と深層学習のセマンティクスの提供に関する議論を始めるのに役立てることを期待している。
関連論文リスト
- Compositional Generalization Across Distributional Shifts with Sparse Tree Operations [77.5742801509364]
我々は、微分可能木機械と呼ばれる統合されたニューロシンボリックアーキテクチャを導入する。
シンボル構造の疎ベクトル表現を用いることで,モデルの効率を大幅に向上する。
より一般的なseq2seq問題に制限されたtree2tree問題以外の適用を可能にする。
論文 参考訳(メタデータ) (2024-12-18T17:20:19Z) - Shadow of the (Hierarchical) Tree: Reconciling Symbolic and Predictive Components of the Neural Code for Syntax [1.223779595809275]
線形で予測的な「水平」プロセスで階層的な「垂直」構文のニューラルネットワークを再構築する可能性について論じる。
語彙・意味的統計特徴をコードするニューラルレジームに記号表現を注入する方法に関するニューロシンボリックな数学的モデルを提供する。
論文 参考訳(メタデータ) (2024-12-02T08:44:16Z) - Closed-Form Interpretation of Neural Network Latent Spaces with Symbolic Gradients [0.0]
本稿では,ニューラルネットワークの潜在空間におけるニューロンのクローズドフォーム解釈の枠組みを提案する。
解釈フレームワークは、トレーニングされたニューラルネットワークを同じ概念をエンコードする同値クラスの関数に埋め込むことに基づいている。
論文 参考訳(メタデータ) (2024-09-09T03:26:07Z) - A short Survey: Exploring knowledge graph-based neural-symbolic system from application perspective [0.0]
AIシステムにおけるヒューマンライクな推論と解釈可能性の実現は、依然として大きな課題である。
ニューラルネットワークをシンボリックシステムと統合するNeural-Symbolicパラダイムは、より解釈可能なAIへの有望な経路を提供する。
本稿では,知識グラフに基づくニューラルシンボリック統合の最近の進歩について考察する。
論文 参考訳(メタデータ) (2024-05-06T14:40:50Z) - Symbol Correctness in Deep Neural Networks Containing Symbolic Layers [0.0]
NS-DNNの設計と分析を導く高レベル原理を定式化する。
NS-DNNの説明可能性と伝達学習にはシンボルの正しさが不可欠であることを示す。
論文 参考訳(メタデータ) (2024-02-06T03:33:50Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
本稿では,ニューロシンボリックシステムに対する望ましい基準のリストを提案し,既存のアプローチのいくつかがこれらの基準にどう対処するかを検討する。
次に、等価なニューラルアーキテクチャの作成を可能にするアノテーション付き一般化論理の拡張を提案する。
トレーニングプロセスの継続的な最適化に依存する従来のアプローチとは異なり、当社のフレームワークは、離散最適化を使用する二項化ニューラルネットワークとして設計されている。
論文 参考訳(メタデータ) (2023-02-23T17:39:46Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。