論文の概要: Dual-Criterion Model Aggregation in Federated Learning: Balancing Data Quantity and Quality
- arxiv url: http://arxiv.org/abs/2411.07816v1
- Date: Tue, 12 Nov 2024 14:09:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:20:46.616239
- Title: Dual-Criterion Model Aggregation in Federated Learning: Balancing Data Quantity and Quality
- Title(参考訳): フェデレーション学習におけるデュアル・クリタリオン・モデル・アグリゲーション:データの量と品質のバランス
- Authors: Haizhou Zhang, Xianjia Yu, Tomi Westerlund,
- Abstract要約: フェデレートラーニング(FL)は、プライバシ保護のための協調学習の鍵となる方法の1つとなっている。
集約アルゴリズムは、システムの有効性と安全性を確保する上で最も重要なコンポーネントの1つとして認識される。
本研究では,クライアントノードからのデータ量と品質を含む新しい二項重み付けアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Federated learning (FL) has become one of the key methods for privacy-preserving collaborative learning, as it enables the transfer of models without requiring local data exchange. Within the FL framework, an aggregation algorithm is recognized as one of the most crucial components for ensuring the efficacy and security of the system. Existing average aggregation algorithms typically assume that all client-trained data holds equal value or that weights are based solely on the quantity of data contributed by each client. In contrast, alternative approaches involve training the model locally after aggregation to enhance adaptability. However, these approaches fundamentally ignore the inherent heterogeneity between different clients' data and the complexity of variations in data at the aggregation stage, which may lead to a suboptimal global model. To address these issues, this study proposes a novel dual-criterion weighted aggregation algorithm involving the quantity and quality of data from the client node. Specifically, we quantify the data used for training and perform multiple rounds of local model inference accuracy evaluation on a specialized dataset to assess the data quality of each client. These two factors are utilized as weights within the aggregation process, applied through a dynamically weighted summation of these two factors. This approach allows the algorithm to adaptively adjust the weights, ensuring that every client can contribute to the global model, regardless of their data's size or initial quality. Our experiments show that the proposed algorithm outperforms several existing state-of-the-art aggregation approaches on both a general-purpose open-source dataset, CIFAR-10, and a dataset specific to visual obstacle avoidance.
- Abstract(参考訳): フェデレートラーニング(FL)は、ローカルデータ交換を必要とせずにモデルの転送を可能にするため、プライバシ保護協調学習の鍵となる方法の1つとなっている。
FLフレームワーク内では、アグリゲーションアルゴリズムがシステムの有効性とセキュリティを確保する上で最も重要なコンポーネントの1つとして認識される。
既存の平均集約アルゴリズムは通常、全てのクライアントが訓練したデータは等しい値を持っているか、重みは各クライアントが提供したデータ量だけに基づいていると仮定する。
対照的に、別のアプローチでは、アグリゲーション後のモデルを局所的にトレーニングし、適応性を高める。
しかしながら、これらのアプローチは、異なるクライアントのデータ間の固有の不均一性や、集約段階におけるデータの変動の複雑さを根本的に無視する。
これらの問題に対処するために,クライアントノードからのデータ量と品質を含む二項重み付けアルゴリズムを提案する。
具体的には、各クライアントのデータ品質を評価するために、訓練に使用するデータを定量化し、特殊なデータセット上で複数の局所モデル推論精度評価を行う。
これらの2つの因子は凝集過程内の重みとして利用され、これら2つの因子の動的重み付け和によって適用される。
このアプローチにより、アルゴリズムは重み付けを適応的に調整し、データのサイズや初期品質に関わらず、すべてのクライアントがグローバルモデルにコントリビュートできることを保証する。
提案アルゴリズムは,汎用オープンソースデータセットであるCIFAR-10と,視覚的障害物回避に特化したデータセットの両方において,既存の最先端アグリゲーションアプローチよりも優れていることを示す。
関連論文リスト
- FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients [13.98392319567057]
Federated Learning (FL) は分散機械学習のパラダイムであり、分散計算と周期モデル合成によってグローバルに堅牢なモデルを実現する。
広く採用されているにもかかわらず、既存のFLとPFLの作業は、クラス不均衡の問題に包括的に対処していない。
本稿では,適応型クライアント間コラーニング手法を用いて,クラス不均衡に対処できる効率的なPFLアルゴリズムであるFedReMaを提案する。
論文 参考訳(メタデータ) (2024-11-04T05:44:28Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$は、アルゴリズムに基づくパーソナライズされたフェデレーション学習フレームワークである。
我々は、textitLearn2pFed$が、従来のパーソナライズされたフェデレーション学習方法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-01-16T12:45:15Z) - FedDRL: A Trustworthy Federated Learning Model Fusion Method Based on Staged Reinforcement Learning [7.846139591790014]
2段階のアプローチに基づく強化学習を用いたモデル融合手法であるFedDRLを提案する。
最初の段階では、我々の手法は悪意あるモデルをフィルタリングし、信頼されたクライアントモデルを選択してモデル融合に参加する。
第2段階では、FedDRLアルゴリズムは信頼されたクライアントモデルの重みを適応的に調整し、最適なグローバルモデルを集約する。
論文 参考訳(メタデータ) (2023-07-25T17:24:32Z) - Deep Unfolding-based Weighted Averaging for Federated Learning in
Heterogeneous Environments [11.023081396326507]
フェデレートラーニング(Federated Learning)は、複数のクライアントによるモデル更新と、中央サーバによるアップデートの集約を反復する、協調的なモデルトレーニング手法である。
そこで本研究では, パラメータ調整法として, 深部展開法(deep unfolding)を用いる。
提案手法は,実世界の現実的なタスクを遂行できるような事前学習モデルを用いて,大規模学習モデルを扱うことができる。
論文 参考訳(メタデータ) (2022-12-23T08:20:37Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
フェデレートラーニング(FL)は、データプライバシと送信問題を克服する有望な方法として最近登場した。
FLでは、異なるデバイスやセンサーから収集されたデータセットを使用して、各学習を集中型モデル(サーバ)と共有するローカルモデル(クライアント)をトレーニングする。
本稿では,PC-FedAvg(Personalized FedAvg, PC-FedAvg)を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:57:11Z) - Federated Noisy Client Learning [105.00756772827066]
フェデレートラーニング(FL)は、複数のローカルクライアントに依存する共有グローバルモデルを協調的に集約する。
標準FLメソッドは、集約されたモデル全体のパフォーマンスを損なううるノイズの多いクライアントの問題を無視します。
本稿では,Fed-NCL (Federated Noisy Client Learning) を提案する。
論文 参考訳(メタデータ) (2021-06-24T11:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。