論文の概要: Do DALL-E and Flamingo Understand Each Other?
- arxiv url: http://arxiv.org/abs/2212.12249v2
- Date: Fri, 18 Aug 2023 18:44:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 02:06:48.456631
- Title: Do DALL-E and Flamingo Understand Each Other?
- Title(参考訳): DALL-EとFlamingoはお互いに理解しているのか?
- Authors: Hang Li, Jindong Gu, Rajat Koner, Sahand Sharifzadeh, Volker Tresp
- Abstract要約: 本研究では,Flamingoが与えられた画像の記述を生成し,DALL-Eがこの記述を入力として新しい画像を合成する再構成タスクを提案する。
画像の最適記述は、生成した画像が元の画像と似たものになることを示す。
本稿では,テキスト・トゥ・イメージと画像・トゥ・テキストモデルを微調整する統合フレームワークを提案する。
- 参考スコア(独自算出の注目度): 36.4732744974398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of multimodal research focusing on the comprehension and creation
of both images and text has witnessed significant strides. This progress is
exemplified by the emergence of sophisticated models dedicated to image
captioning at scale, such as the notable Flamingo model and text-to-image
generative models, with DALL-E serving as a prominent example. An interesting
question worth exploring in this domain is whether Flamingo and DALL-E
understand each other. To study this question, we propose a reconstruction task
where Flamingo generates a description for a given image and DALL-E uses this
description as input to synthesize a new image. We argue that these models
understand each other if the generated image is similar to the given image.
Specifically, we study the relationship between the quality of the image
reconstruction and that of the text generation. We find that an optimal
description of an image is one that gives rise to a generated image similar to
the original one. The finding motivates us to propose a unified framework to
finetune the text-to-image and image-to-text models. Concretely, the
reconstruction part forms a regularization loss to guide the tuning of the
models. Extensive experiments on multiple datasets with different image
captioning and image generation models validate our findings and demonstrate
the effectiveness of our proposed unified framework. As DALL-E and Flamingo are
not publicly available, we use Stable Diffusion and BLIP in the remaining work.
Project website: https://dalleflamingo.github.io.
- Abstract(参考訳): 画像とテキストの理解と作成に焦点を当てたマルチモーダル研究の分野は、大きな進歩を遂げている。
この進歩は、著名なフラミンゴモデルやテキスト・ツー・イメージ生成モデルなど、画像キャプションを大規模に扱う洗練されたモデルが出現し、DALL-Eが顕著な例となっている。
この領域で探求する価値のある興味深い質問は、FlamingoとDALL-Eがお互いを理解しているかどうかである。
そこで本研究では,Flamingoが与えられた画像の記述を生成し,DALL-Eがこの記述を入力として新しい画像の合成を行う再構成タスクを提案する。
生成した画像が与えられた画像と類似している場合、これらのモデルは互いに理解する。
具体的には,画像再構成の品質とテキスト生成の質の関係について検討する。
画像の最適な記述は,その画像に類似した画像を生成するものであることがわかった。
この発見は、テキストから画像へ、画像からテキストへモデルを微調整するための統一フレームワークの提案を動機付ける。
具体的には、再構成部は、モデルのチューニングをガイドする正規化損失を形成する。
画像キャプションと画像生成モデルが異なる複数のデータセットに関する広範な実験により,提案手法の有効性が検証された。
DALL-EとFlamingoは公開されていないので、残りの作業にはStable DiffusionとBLIPを使用します。
プロジェクトウェブサイト: https://dalleflamingo.github.io
関連論文リスト
- Image Regeneration: Evaluating Text-to-Image Model via Generating Identical Image with Multimodal Large Language Models [54.052963634384945]
画像再生タスクを導入し,テキスト・ツー・イメージ・モデルの評価を行う。
我々はGPT4Vを用いて参照画像とT2Iモデルのテキスト入力のギャップを埋める。
また、生成した画像の品質を高めるために、ImageRepainterフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T13:52:43Z) - Image2Text2Image: A Novel Framework for Label-Free Evaluation of Image-to-Text Generation with Text-to-Image Diffusion Models [16.00576040281808]
本稿では,画像キャプションモデルを評価するための新しいフレームワークであるImage2Text2Imageを提案する。
高い類似度スコアは、このモデルが忠実なテキスト記述を生み出し、低いスコアは相違点を強調していることを示唆している。
本フレームワークは人手によるキャプション参照に依存しないので,画像キャプションモデルを評価する上で貴重なツールである。
論文 参考訳(メタデータ) (2024-11-08T17:07:01Z) - A Novel Evaluation Framework for Image2Text Generation [15.10524860121122]
本稿では,画像生成が可能な現代大規模言語モデル(LLM)に根ざした評価フレームワークを提案する。
高い類似度スコアは、画像キャプションモデルが正確にテキスト記述を生成することを示唆している。
類似度の低いスコアは相違点を示し、モデルの性能の潜在的な欠点を明らかにする。
論文 参考訳(メタデータ) (2024-08-03T09:27:57Z) - DEADiff: An Efficient Stylization Diffusion Model with Disentangled
Representations [64.43387739794531]
現在のエンコーダベースのアプローチは、スタイルの転送中にテキスト・ツー・イメージモデルのテキスト制御性を著しく損なう。
この問題に対処するために、以下の2つの戦略を用いてDEADiffを紹介します。
DeAiffは、テキスト・ツー・イメージモデルに固有のテキスト制御性と、参照画像とスタイルの類似性との間の最適な視覚的スタイリング結果と最適なバランスを得る。
論文 参考訳(メタデータ) (2024-03-11T17:35:23Z) - eDiffi: Text-to-Image Diffusion Models with an Ensemble of Expert
Denoisers [87.52504764677226]
大規模拡散に基づく生成モデルは、テキスト条件の高解像度画像合成においてブレークスルーをもたらした。
異なる段階合成に特化したテキスト・画像拡散モデルのアンサンブルを訓練する。
eDiffiと呼ばれる拡散モデルのアンサンブルは、同じ推論コストを維持しながらテキストアライメントを改善する。
論文 参考訳(メタデータ) (2022-11-02T17:43:04Z) - Swinv2-Imagen: Hierarchical Vision Transformer Diffusion Models for
Text-to-Image Generation [25.14323931233249]
階層型ビジュアルトランスフォーマとセマンティックレイアウトを取り入れたシーングラフに基づくテキスト・画像拡散モデルを提案する。
提案モデルでは, 実体と関係の特徴ベクトルを抽出し, 拡散モデルに関係付ける。
我々はまた、CNN畳み込み操作に起因する問題に対処できるSwinv2-Unetと呼ばれるSwin-TransformerベースのUNetアーキテクチャも導入した。
論文 参考訳(メタデータ) (2022-10-18T02:50:34Z) - Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding [53.170767750244366]
Imagenは、前例のないフォトリアリズムと深い言語理解を備えたテキスト間拡散モデルである。
テキスト・ツー・イメージ・モデルをより深く評価するために,テキスト・ツー・イメージ・モデルの総合的かつ挑戦的なベンチマークであるDrawBenchを紹介した。
論文 参考訳(メタデータ) (2022-05-23T17:42:53Z) - Image Retrieval from Contextual Descriptions [22.084939474881796]
文脈記述による画像検索(ImageCoDe)
文脈記述に基づく10の最小限のコントラスト候補から正しい画像を取得するためのモデル。
ビデオフレームでは20.9、静的画像では59.4の精度で、人間では90.8である。
論文 参考訳(メタデータ) (2022-03-29T19:18:12Z) - Structural-analogy from a Single Image Pair [118.61885732829117]
本稿では,1対の画像A,Bのみを用いて,ニューラルネットワークによる画像構造理解能力について検討する。
我々は、B の外観とスタイルを保持するが、A に対応する構造的配置を持つ画像を生成する。
提案手法は,画像AとBのみを利用した条件生成タスクにおいて,高品質な画像を生成するために利用できる。
論文 参考訳(メタデータ) (2020-04-05T14:51:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。