論文の概要: Introduction to Machine Learning for Physicians: A Survival Guide for
Data Deluge
- arxiv url: http://arxiv.org/abs/2212.12303v1
- Date: Fri, 23 Dec 2022 13:08:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 16:16:17.209442
- Title: Introduction to Machine Learning for Physicians: A Survival Guide for
Data Deluge
- Title(参考訳): 医学者のための機械学習入門:データデルージュの生存ガイド
- Authors: Ri\v{c}ards Marcinkevi\v{c}s, Ece Ozkan, Julia E. Vogt
- Abstract要約: 現代の研究分野は、大規模な、しばしば構造化されていない、不安定なデータセットの収集と分析にますます依存している。
このデータルージュを活用できる機械学習や人工知能アプリケーションへの関心が高まっている。
この幅広い非技術的概要は、医学的および生物学的応用に特に焦点をあてた、機械学習への穏やかな紹介を提供する。
- 参考スコア(独自算出の注目度): 9.152759278163954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many modern research fields increasingly rely on collecting and analysing
massive, often unstructured, and unwieldy datasets. Consequently, there is
growing interest in machine learning and artificial intelligence applications
that can harness this `data deluge'. This broad nontechnical overview provides
a gentle introduction to machine learning with a specific focus on medical and
biological applications. We explain the common types of machine learning
algorithms and typical tasks that can be solved, illustrating the basics with
concrete examples from healthcare. Lastly, we provide an outlook on open
challenges, limitations, and potential impacts of machine-learning-powered
medicine.
- Abstract(参考訳): 現代の多くの研究分野は、大規模で、しばしば非構造化され、不完全なデータセットの収集と分析にますます依存している。
その結果、この‘データデルージュ’を活用できる機械学習や人工知能アプリケーションへの関心が高まっている。
この幅広い非技術的概要は、医学的および生物学的応用に特に焦点をあてた機械学習の穏やかな紹介を提供する。
機械学習アルゴリズムの一般的なタイプと、解決可能な典型的なタスクを説明し、基礎を医療の具体的な例で示します。
最後に、機械学習による医療のオープンな課題、限界、潜在的な影響について展望を提供する。
関連論文リスト
- EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications [0.2826977330147589]
機械学習モデルの事前処理、トレーニング、評価、可視化が可能なWebベースのエンドツーエンドパイプラインを提案する。
本ライブラリは,マルチモーダル・マルチセンサ・データセットの認識,分類,クラスタリング,および予測を支援する。
論文 参考訳(メタデータ) (2024-03-27T02:24:38Z) - Machine Learning for Leaf Disease Classification: Data, Techniques and
Applications [14.73818032506552]
近年、機械学習は、学術研究と産業応用の両方において葉病分類に採用されている。
この研究は、データ、技術、アプリケーションを含むトピックのさまざまな側面に関する調査を提供する。
論文 参考訳(メタデータ) (2023-10-19T06:21:21Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Deep learning and machine learning for Malaria detection: overview,
challenges and future directions [0.0]
本研究では、さまざまな機械学習および画像処理手法を用いて、マラリアの病気を検出し予測する。
そこで本研究では,マラリア検出に広く適用可能なスマートツールとして,ディープラーニング技術の可能性を見出した。
論文 参考訳(メタデータ) (2022-09-27T10:33:00Z) - Open Environment Machine Learning [84.90891046882213]
従来の機械学習研究は、学習プロセスの重要な要素が不変であるような近世界のシナリオを想定している。
本稿では,新しいクラスを創出する技術,デクリメンタル/インクリメンタルな特徴,データ分散の変化,学習目標の変化,理論的諸問題について概説する。
論文 参考訳(メタデータ) (2022-06-01T11:57:56Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - Scalable Causal Structure Learning: New Opportunities in Biomedicine [13.644407210028927]
我々は、因果構造発見のための従来のスコアベース、機械学習に基づく卓越したスキームをレビューし、いくつかのベンチマークデータセット上でのパフォーマンスについて研究し、バイオメディシンへのいくつかの応用について論じる。
十分なデータの場合、機械学習ベースのアプローチはスケーラブルであり、従来のアプローチよりも多くの変数を含めることができる。
論文 参考訳(メタデータ) (2021-10-15T00:45:25Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Synthetic Data: Opening the data floodgates to enable faster, more
directed development of machine learning methods [96.92041573661407]
機械学習における画期的な進歩の多くは、大量のリッチデータを利用できることに起因する。
多くの大規模データセットは、医療データなど高度に敏感であり、機械学習コミュニティでは広く利用できない。
プライバシー保証で合成データを生成することは、そのようなソリューションを提供します。
論文 参考訳(メタデータ) (2020-12-08T17:26:10Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - Machine learning-based clinical prediction modeling -- A practical guide
for clinicians [0.0]
機械学習や人工知能に関連する原稿の数は、ここ数年で指数関数的に増えている。
第1節では、機械学習の一般的な原理について解説する。
さらに,再サンプリング,オーバーフィッティング,モデル一般化性の重要性とモデル評価戦略を概観する。
論文 参考訳(メタデータ) (2020-06-23T20:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。