On the strangeness of quantum probabilities
- URL: http://arxiv.org/abs/2212.12304v1
- Date: Fri, 23 Dec 2022 13:10:39 GMT
- Title: On the strangeness of quantum probabilities
- Authors: Marcello Poletti
- Abstract summary: We will address in detail the problem of determining how the concept of undecidability leads to substantial changes to classical theory of probability.
We will show how such changes produce a theory that coincides with the principles underlying quantum mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Here we continue with the ideas expressed in "On the strangeness of quantum
mechanics" aiming to demonstrate more concretely how this philosophical outlook
might be used as a key for resolving the measurement problem. We will address
in detail the problem of determining how the concept of undecidability leads to
substantial changes to classical theory of probability by showing how such
changes produce a theory that coincides with the principles underlying quantum
mechanics.
Related papers
- Quantum Entanglement Through the Lens of Paraconsistent Logic [0.0]
This paper presents an alternative approach to quantum entanglement, one that effectively resolves the logical inconsistencies without leading to logical contradictions.
By addressing some of the inconsistencies within quantum mechanics, such as state superposition and non-locality, our method is constructed on the principles of paraconsistent logic.
arXiv Detail & Related papers (2024-05-14T17:10:20Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - On Some Quantum Correction to the Coulomb Potential in Generalized Uncertainty Principle Approach [0.0]
We consider a modified Schr"odinger equation resulting from a generalized uncertainty principle.
As the resulting equation cannot be solved by common exact approaches, we propose a Bethe ansatz approach.
arXiv Detail & Related papers (2024-01-07T12:07:35Z) - The measurement problem in the light of the theory of decoherence [0.0]
This paper proposes an exhaustive solution to the measurement problem in view of the theory of decoherence.
Considering the latter as a probabilistic theory all along allows us to avoid the usual probability problem of the many-worlds interpretations.
A thorough verification of the consistency of quantum mechanics at all scales is proposed, as well as a discussion of what can be deemed an observer.
arXiv Detail & Related papers (2023-03-06T19:47:52Z) - Gravity, Quantum Fields and Quantum Information: Problems with classical
channel and stochastic theories [0.0]
We show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory.
Second, we point out that in general one cannot replace a quantum field by that of classical sources, or mock up the effects of quantum fluctuations by classical noises.
arXiv Detail & Related papers (2022-02-06T14:55:46Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - The (Quantum) Measurement Problem in Classical Mechanics [0.0]
We show why this is not an "obvious" nor "self evident" problem for the theory of quanta.
We discuss a representational realist account of both physical 'theories' and'measurement'
We show how through these same set of presuppositions it is easy to derive a completely analogous paradox for the case of classical mechanics.
arXiv Detail & Related papers (2020-01-01T17:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.