Quantum scars in spin-1/2 isotropic Heisenberg clusters
- URL: http://arxiv.org/abs/2212.12362v2
- Date: Sun, 28 May 2023 01:57:45 GMT
- Title: Quantum scars in spin-1/2 isotropic Heisenberg clusters
- Authors: G. Zhang and Z. Song
- Abstract summary: In the presence of uniform field in one direction, the SU(2) symmetry of the system allows that almost whole spectrum consists of a large number of towers with identical level spacing.
Our finding reveals the possibility of quantum information processing that is immune to the thermalization in finite size quantum spin clusters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the influence of the external fields on the statistics of
energy levels and towers of eigenstates in spin-1/2 isotropic Heisenberg
clusters, including chain, ladder, square and triangular lattices. In the
presence of uniform field in one direction, the SU(2) symmetry of the system
allows that almost whole spectrum consists of a large number of towers with
identical level spacing. Exact diagonalization on finite clusters shows that
random transverse fields in other two directions drive the level statistics
from Poisson to Wigner-Dyson distributions with different values of mean level
spacing ratio, indicating the transition from integrability to
non-integrability. However, for the three types of clusters, it is found that
the largest tower still hold approximately even the symmetry is broken,
resulting to a quantum scar. Remarkably, the non-thermalized states cover the
Greenberger-Horn-Zeilinger and W states, which maintain the feature of revival
while a Neel state decays fast in the dynamic processes. In addition, some
dynamic schemes for experimental detection are proposed. Our finding reveals
the possibility of quantum information processing that is immune to the
thermalization in finite size quantum spin clusters.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Hilbert Space Fragmentation in Open Quantum Systems [0.7412445894287709]
We investigate the phenomenon of Hilbert space fragmentation (HSF) in open quantum systems.
We find that it can stabilize highly entangled steady states.
arXiv Detail & Related papers (2023-05-05T18:00:06Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Interacting bosons in a triple well: Preface of many-body quantum chaos [0.0]
We investigate the onset of quantum chaos in a triple-well model that moves away from integrability as its potential gets tilted.
Even in its deepest chaotic regime, the system presents features reminiscent of integrability.
arXiv Detail & Related papers (2021-11-26T19:00:03Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Quantum scars and bulk coherence in a symmetry-protected topological
phase [0.0]
We show the existence of many-body scars and their implications on bulk coherence in certain protected topological (SPT) phases.
We show that eigenstates with volume-law entanglement coexist with area-law entangled eigenstates throughout the spectrum.
Our work sheds light on the role of quantum many-body scars in preserving SPT order at finite temperature and the possibility of coherent bulk dynamics in models with SPT order beyond the existence of long-lived edge modes.
arXiv Detail & Related papers (2021-03-29T18:35:35Z) - Qubit regularization of asymptotic freedom [35.37983668316551]
Heisenberg-comb acts on a Hilbert space with only two qubits per spatial lattice site.
We show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units.
We argue that near-term quantum computers may suffice to demonstrate freedom.
arXiv Detail & Related papers (2020-12-03T18:41:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.