Symmetric tensor scars with tunable entanglement from volume to area law
- URL: http://arxiv.org/abs/2501.14024v2
- Date: Thu, 06 Feb 2025 15:33:14 GMT
- Title: Symmetric tensor scars with tunable entanglement from volume to area law
- Authors: Bhaskar Mukherjee, Christopher J. Turner, Marcin Szyniszewski, Arijeet Pal,
- Abstract summary: We study the construction of highly energetic eigenstates with tunable long-range entanglement.
We find many exact zero-energy eigenstates for a class of non-integrable spin-1/2 Hamiltonians with two-body correlations.
This framework has a natural extension to higher dimensions, where entangled states controlled by lattice geometry and internal symmetries can result in new classes of correlated out-of-equilibrium quantum matter.
- Score: 0.0
- License:
- Abstract: Teleportation of quantum information over long distances requires robust entanglement on the macroscopic scale. The construction of highly energetic eigenstates with tunable long-range entanglement can provide a new medium for information transmission. Using a symmetric superposition of the antipodal triplet states, we construct polynomially many exact zero-energy eigenstates for a class of non-integrable spin-1/2 Hamiltonians with two-body interactions. These states exhibit non-thermal correlations, and by tuning the distribution of triplets we induce extensive, logarithmic, or area-law entanglement. Quasiparticle excitations in this manifold converge to be exact quantum many-body scars in the thermodynamic limit. This framework has a natural extension to higher dimensions, where entangled states controlled by lattice geometry and internal symmetries can result in new classes of correlated out-of-equilibrium quantum matter. Our results provide a new avenue for entanglement control and quantum state constructions.
Related papers
- Efficient Eigenstate Preparation in an Integrable Model with Hilbert Space Fragmentation [42.408991654684876]
We consider the preparation of all the eigenstates of spin chains using quantum circuits.
We showivities of the growth is also achievable for interacting models where the interaction between the particles is sufficiently simple.
arXiv Detail & Related papers (2024-11-22T18:57:08Z) - Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Stable infinite-temperature eigenstates in SU(2)-symmetric nonintegrable models [0.0]
A class of nonintegrable bond-staggered models is endowed with a large number of zero-energy eigenstates and possesses a non-Abelian internal symmetry.
We show that few-magnon zero-energy states have an exact analytical description, allowing us to build a basis of low-entangled fixed-separation states.
arXiv Detail & Related papers (2024-07-16T17:48:47Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Characteristic features of the strongly-correlated regime: Lessons from
a 3-fermion one-dimensional harmonic trap [0.0]
We study the transition into a strongly-correlated regime of 3 fermions trapped in a harmonic potential.
Some features of the regime are also present in strongly-correlated materials relevant to the industry.
arXiv Detail & Related papers (2024-01-05T03:38:48Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Universal Error Bound for Constrained Quantum Dynamics [0.0]
We establish an observable-based error bound for a constrained-dynamics approximation in generic gapped quantum systems.
Our work establishes a universal and rigorous result concerning nonequilibrium quantum dynamics.
arXiv Detail & Related papers (2020-01-03T06:25:03Z) - Evidence for Bosonization in a three-dimensional gas of SU($N$) fermions [5.5318102301220815]
We report direct evidence for bosonization in a SU($N$) fermionic ytterbium gas with tunable $N$ in three dimensions (3D)
We find that the contact per spin approaches a constant with a 1/$N$ scaling in the low fugacity regime consistent with our theoretical prediction.
Our work delivers a highly controllable quantum simulator to exchange the bosonic and fermionic statistics through tuning the internal degrees of freedom in any generic dimensions.
arXiv Detail & Related papers (2019-12-27T14:03:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.