論文の概要: Assessing thermal imagery integration into object detection methods on
ground-based and air-based collection platforms
- arxiv url: http://arxiv.org/abs/2212.12616v1
- Date: Fri, 23 Dec 2022 23:51:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 13:59:16.380271
- Title: Assessing thermal imagery integration into object detection methods on
ground-based and air-based collection platforms
- Title(参考訳): 地上および空中の収集プラットフォームにおける熱画像統合と物体検出手法の評価
- Authors: James Gallagher, Edward Oughton
- Abstract要約: 物体検出機械学習(ML)モデルの性能を高めるために、熱長波赤外線(LWIR)画像でRGBを融合する。
地上混合RGB-LWIRモデルは、RGBまたはLWIRのアプローチよりも優れた性能を示し、98.4%のmAPを達成した。
本研究は,地上および航空プラットフォームから収集したRGB,LWIR,RGB-LWIR融合画像に対して,12,600枚の画像のラベル付きトレーニングデータセットを新たに提供した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection models commonly deployed on uncrewed aerial systems (UAS)
focus on identifying objects in the visible spectrum using Red-Green-Blue (RGB)
imagery. However, there is growing interest in fusing RGB with thermal long
wave infrared (LWIR) images to increase the performance of object detection
machine learning (ML) models. Currently LWIR ML models have received less
research attention, especially for both ground- and air-based platforms,
leading to a lack of baseline performance metrics evaluating LWIR, RGB and
LWIR-RGB fused object detection models. Therefore, this research contributes
such quantitative metrics to the literature .The results found that the
ground-based blended RGB-LWIR model exhibited superior performance compared to
the RGB or LWIR approaches, achieving a mAP of 98.4%. Additionally, the blended
RGB-LWIR model was also the only object detection model to work in both day and
night conditions, providing superior operational capabilities. This research
additionally contributes a novel labelled training dataset of 12,600 images for
RGB, LWIR, and RGB-LWIR fused imagery, collected from ground-based and
air-based platforms, enabling further multispectral machine-driven object
detection research.
- Abstract(参考訳): 無人航空機システム(UAS)に通常デプロイされる物体検出モデルは、赤緑色(RGB)画像を用いた可視光スペクトル中の物体の識別に重点を置いている。
しかし、オブジェクト検出機械学習(ML)モデルの性能を高めるために、熱長波赤外線(LWIR)画像とRGBを融合することへの関心が高まっている。
現在、LWIR MLモデルは、特に地上プラットフォームと空中プラットフォームの両方で研究の注目を集めておらず、LWIR、RGB、LWIR-RGB融合オブジェクト検出モデルを評価するベースラインパフォーマンス指標が欠如している。
そこで本研究では,このような量的指標を文献に貢献する。
その結果、地上混合RGB-LWIRモデルは、RGBまたはLWIRアプローチよりも優れた性能を示し、98.4%のmAPを達成した。
さらに、RGB-LWIRのブレンドモデルは、昼と夜の両方で機能する唯一のオブジェクト検出モデルであり、優れた操作機能を提供する。
本研究は、地上および地上プラットフォームから収集したRGB, LWIR, RGB-LWIR融合画像用の12,600枚のラベル付きトレーニングデータセットを新たに提供し、さらに多スペクトル機械駆動物体検出研究を可能にする。
関連論文リスト
- The Solution for the GAIIC2024 RGB-TIR object detection Challenge [5.625794757504552]
RGB-TIRオブジェクト検出は、RGBとTIRの両方の画像を、検出中に補完情報として利用する。
提案手法はAとBのベンチマークでそれぞれ0.516と0.543のmAPスコアを得た。
論文 参考訳(メタデータ) (2024-07-04T12:08:36Z) - RBF Weighted Hyper-Involution for RGB-D Object Detection [0.0]
リアルタイムと2つのストリームRGBDオブジェクト検出モデルを提案する。
提案モデルでは, 深度誘導型ハイパーインボリューションを生深度マップの空間的相互作用パターンに基づいて動的に適応する深度誘導型ハイパーインボリューションと, アップサンプリングに基づくトレーニング可能な融合層からなる。
提案モデルは,NYU Depth v2データセットで他のRGB-Dベースオブジェクト検出モデルよりも優れており,SUN RGB-Dで比較した(第2位)結果が得られることを示す。
論文 参考訳(メタデータ) (2023-09-30T11:25:34Z) - Translation, Scale and Rotation: Cross-Modal Alignment Meets
RGB-Infrared Vehicle Detection [10.460296317901662]
空中RGB-IR画像における検出は, クロスモーダルな不整合問題に悩まされている。
本稿では,TSRA (Translation-Scale-Rotation Alignment) モジュールを提案する。
TSRAモジュールに基づく2ストリーム特徴アライメント検出器(TSFADet)は、空中画像におけるRGB-IRオブジェクト検出のために構築されている。
論文 参考訳(メタデータ) (2022-09-28T03:06:18Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-熱的物体検出(RGB-T SOD)は、視光対と熱赤外画像対の一般的な顕著な物体を見つけることを目的としている。
本稿では,RGB-T SODのための新しいミラー補完トランスフォーマネットワーク(MCNet)を提案する。
ベンチマークとVT723データセットの実験により、提案手法は最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-07-07T20:26:09Z) - Multi-Scale Iterative Refinement Network for RGB-D Salient Object
Detection [7.062058947498447]
RGB画像の様々なスケールや解像度に、様々な特徴レベルの意味的ギャップがあるため、健全な視覚的手がかりが現れる。
同様のサージェントパターンは、クロスモーダルなディープイメージとマルチスケールバージョンで利用できる。
注意に基づく融合モジュール (ABF) を設計し, 相互相関に対処する。
論文 参考訳(メタデータ) (2022-01-24T10:33:00Z) - Middle-level Fusion for Lightweight RGB-D Salient Object Detection [81.43951906434175]
本稿では,新しい軽量RGB-D SODモデルについて述べる。
中層核融合構造に IMFF および L モジュールが組み込まれているため,提案モデルは3.9M のパラメータしか持たず,33 FPS で動作する。
いくつかのベンチマークデータセットによる実験結果から,提案手法の有効性と優位性を検証した。
論文 参考訳(メタデータ) (2021-04-23T11:37:15Z) - DUT-LFSaliency: Versatile Dataset and Light Field-to-RGB Saliency
Detection [104.50425501764806]
ライトフィールドサリエンシー検出のための汎用性の高いアプリケーションを可能にする大規模なデータセットを紹介します。
本論文では,フォカルストリームとRGBストリームからなる非対称2ストリームモデルを提案する。
実験は、我々の焦点ストリームが最先端のパフォーマンスを達成することを実証する。
論文 参考訳(メタデータ) (2020-12-30T11:53:27Z) - Learning Selective Mutual Attention and Contrast for RGB-D Saliency
Detection [145.4919781325014]
クロスモーダル情報を効果的に融合する方法は、RGB-Dの有能な物体検出の鍵となる問題である。
多くのモデルは特徴融合戦略を用いるが、低次点対点融合法によって制限されている。
本研究では,異なるモダリティから注目とコンテキストを融合させることにより,新たな相互注意モデルを提案する。
論文 参考訳(メタデータ) (2020-10-12T08:50:10Z) - Siamese Network for RGB-D Salient Object Detection and Beyond [113.30063105890041]
共有ネットワークバックボーンを通じてRGBと深度入力の両方から学習するための新しいフレームワークが提案されている。
5つの一般的な指標を用いた総合的な実験は、設計されたフレームワークが堅牢なRGB-D塩分濃度検出器をもたらすことを示している。
また、JL-DCFをRGB-Dセマンティックセマンティックセマンティクスフィールドにリンクし、いくつかのセマンティクスセマンティクスモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-08-26T06:01:05Z) - RGB-D Salient Object Detection: A Survey [195.83586883670358]
様々な観点からRGB-Dに基づくSODモデルを総合的に調査する。
また、このドメインからSODモデルと人気のあるベンチマークデータセットもレビューします。
今後の研究に向けたRGB-DベースのSODの課題と方向性について論じる。
論文 参考訳(メタデータ) (2020-08-01T10:01:32Z) - Cross-Modal Weighting Network for RGB-D Salient Object Detection [76.0965123893641]
我々は,RGB-D SODの深度チャネルとRGB-D SODの包括的相互作用を促進するために,新しいクロスモーダルウェイトリング(CMW)戦略を提案する。
具体的には、CMW-L、CMW-M、CMW-Hという3つのRGB-depth相互作用モジュールが、それぞれ低レベル、中級、高レベルのクロスモーダル情報融合を扱うように開発されている。
CMWNetは、7つの人気のあるベンチマークで15の最先端のRGB-D SODメソッドを上回っている。
論文 参考訳(メタデータ) (2020-07-09T16:01:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。