論文の概要: Frequency Regularization for Improving Adversarial Robustness
- arxiv url: http://arxiv.org/abs/2212.12732v1
- Date: Sat, 24 Dec 2022 13:14:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 14:34:24.605620
- Title: Frequency Regularization for Improving Adversarial Robustness
- Title(参考訳): 対向ロバスト性向上のための周波数規則化
- Authors: Binxiao Huang, Chaofan Tao, Rui Lin, Ngai Wong
- Abstract要約: 対人訓練(AT)は効果的な防御方法であることが証明されている。
スペクトル領域の出力差を調整するために周波数正則化(FR)を提案する。
本手法は,PGD-20,C&W,オートアタックによる攻撃に対する強靭性を実現する。
- 参考スコア(独自算出の注目度): 8.912245110734334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are incredibly vulnerable to crafted,
human-imperceptible adversarial perturbations. Although adversarial training
(AT) has proven to be an effective defense approach, we find that the
AT-trained models heavily rely on the input low-frequency content for judgment,
accounting for the low standard accuracy. To close the large gap between the
standard and robust accuracies during AT, we investigate the frequency
difference between clean and adversarial inputs, and propose a frequency
regularization (FR) to align the output difference in the spectral domain.
Besides, we find Stochastic Weight Averaging (SWA), by smoothing the kernels
over epochs, further improves the robustness. Among various defense schemes,
our method achieves the strongest robustness against attacks by PGD-20, C\&W
and Autoattack, on a WideResNet trained on CIFAR-10 without any extra data.
- Abstract(参考訳): ディープ・ニューラル・ネットワークは、人間の知覚できない逆境の摂動に対して驚くほど脆弱である。
対戦訓練(AT)は効果的な防御手法であることが証明されているが,AT訓練モデルでは基準精度の低い入力低周波コンテンツに強く依存していることが判明した。
ATにおける標準精度とロバスト精度の大きなギャップを埋めるため、クリーン入力と逆入力の周波数差を調査し、スペクトル領域の出力差を整合させる周波数正則化(FR)を提案する。
さらに,SWA(Stochastic Weight Averaging)は,カーネルをエポック上で滑らかにすることで,より堅牢性を向上させる。
CIFAR-10で訓練されたWideResNet上で,PGD-20,C\&W,オートアタックによる攻撃に対する強い堅牢性を実現する。
関連論文リスト
- The Effectiveness of Random Forgetting for Robust Generalization [21.163070161951868]
我々は,FOMO(Fordt to Mitigate Overfitting)と呼ばれる新しい学習パラダイムを導入する。
FOMOは、重みのサブセットをランダムに忘れる忘れ相と、一般化可能な特徴の学習を強調する再学習相とを交互に扱う。
実験の結果, FOMOは最良と最終ロバストなテスト精度のギャップを大幅に減らし, 頑健なオーバーフィッティングを緩和することがわかった。
論文 参考訳(メタデータ) (2024-02-18T23:14:40Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections [12.807619042576018]
我々はロバスト特徴推論(RFI)と呼ばれる新しいテスト時間防衛戦略を提案する。
RFIは、追加のテスト時間計算なしで既存の(ロバストな)トレーニング手順と簡単に統合できる。
RFIは、適応攻撃や転送攻撃によるロバスト性を継続的に改善することを示す。
論文 参考訳(メタデータ) (2023-07-21T16:18:58Z) - A Spectral Perspective towards Understanding and Improving Adversarial
Robustness [8.912245110734334]
対人訓練(AT)は効果的な防御手法であることが証明されているが、堅牢性向上のメカニズムは十分に理解されていない。
我々は、ATは、形状バイアスのある表現を保持する低周波領域にもっと焦点を合わせ、堅牢性を得るよう深層モデルに誘導することを示す。
本稿では,攻撃された逆入力によって推定されるスペクトル出力が,その自然な入力に可能な限り近いスペクトルアライメント正則化(SAR)を提案する。
論文 参考訳(メタデータ) (2023-06-25T14:47:03Z) - RUSH: Robust Contrastive Learning via Randomized Smoothing [31.717748554905015]
本稿では、対照的な事前学習がロバストネスと興味深いが暗黙の結びつきを持っているという驚くべき事実を示す。
我々は、標準的なコントラスト付き事前学習とランダムな平滑化を組み合わせた強力な対逆攻撃に対する堅牢なアルゴリズムRUSHを設計する。
我々の研究は、最先端技術と比較して、堅牢な精度が15%以上向上し、標準精度がわずかに改善されている。
論文 参考訳(メタデータ) (2022-07-11T18:45:14Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T09:36:59Z) - Multiplicative Reweighting for Robust Neural Network Optimization [51.67267839555836]
MW(multiplicative weight)更新は、専門家のアドバイスにより、適度なデータ破損に対して堅牢である。
MWはラベルノイズの存在下でニューラルネットワークの精度を向上することを示す。
論文 参考訳(メタデータ) (2021-02-24T10:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。