論文の概要: Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation
- arxiv url: http://arxiv.org/abs/2212.12733v1
- Date: Sat, 24 Dec 2022 13:31:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 14:34:08.194953
- Title: Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation
- Title(参考訳): iris意味セグメンテーションにおけるデータ拡張のための人工瞳孔拡張
- Authors: Daniel P. Benalcazar, David A. Benalcazar, Andres Valenzuela
- Abstract要約: 現代の虹彩認識のアプローチでは、深層学習を用いて虹彩の有効部分を眼の他の部分から切り離す。
本稿では,新しいデータ拡張手法を導入することにより,虹彩意味分節システムの精度を向上させることを目的とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biometrics is the science of identifying an individual based on their
intrinsic anatomical or behavioural characteristics, such as fingerprints,
face, iris, gait, and voice. Iris recognition is one of the most successful
methods because it exploits the rich texture of the human iris, which is unique
even for twins and does not degrade with age. Modern approaches to iris
recognition utilize deep learning to segment the valid portion of the iris from
the rest of the eye, so it can then be encoded, stored and compared. This paper
aims to improve the accuracy of iris semantic segmentation systems by
introducing a novel data augmentation technique. Our method can transform an
iris image with a certain dilation level into any desired dilation level, thus
augmenting the variability and number of training examples from a small
dataset. The proposed method is fast and does not require training. The results
indicate that our data augmentation method can improve segmentation accuracy up
to 15% for images with high pupil dilation, which creates a more reliable iris
recognition pipeline, even under extreme dilation.
- Abstract(参考訳): バイオメトリックスは、指紋、顔、虹彩、歩行、声などの固有の解剖学的または行動的特徴に基づいて個人を識別する科学である。
虹彩認識は人間の虹彩の豊かなテクスチャを生かして最も成功した方法の1つであり、これは双子にとってもユニークであり、年齢とともに劣化しない。
現代の虹彩認識のアプローチでは、深層学習を用いて虹彩の有効な部分を眼の他の部分から切り離し、それを符号化、保存、比較することができる。
本稿では,新しいデータ拡張手法を導入することにより,iris意味セグメンテーションシステムの精度を向上させることを目的とする。
本手法は,特定の拡張レベルを持つ虹彩画像を任意の所望の拡張レベルに変換することで,小さなデータセットからの可変性とトレーニングサンプル数を増加させる。
提案手法は高速であり, 訓練は不要である。
以上の結果から,高次瞳孔拡張画像のセグメンテーション精度を最大15%向上させることで,極端拡張下においてもより信頼性の高い虹彩認識パイプラインが作成できることが示唆された。
関連論文リスト
- On the Feasibility of Creating Iris Periocular Morphed Images [9.021226651004055]
本研究は、画像レベルで虹彩形態を生成するためのエンドツーエンドフレームワークを提案する。
ペア対象の選択、セグメンテーション、形態形成、新しい虹彩認識システムなど、異なる段階を考慮する。
その結果,従来の虹彩認識システムと混同できる非常にリアルな画像が得られた。
論文 参考訳(メタデータ) (2024-08-24T06:48:46Z) - EyePreserve: Identity-Preserving Iris Synthesis [8.973296574093506]
本稿では,アイリス画像の完全データ駆動型,アイデンティティ保存型,瞳孔径変化型合成法を提案する。
提案手法の直接的な応用は、(a)虹彩認識のための既存の生体計測データセットの合成、または強化、および(b)瞳孔拡張に有意な差がある虹彩画像対を調べるための法医学の専門家を支援することである。
論文 参考訳(メタデータ) (2023-12-19T10:29:29Z) - Deep Learning for Iris Recognition: A Review [7.884782855865438]
虹彩認識は他の生体認証法よりも信頼性が高く、外部要因の影響を受けにくいと考えられている。
従来の機械学習ベースの虹彩認識方法とは異なり、ディープラーニング技術は機能工学に頼らず、優れたパフォーマンスを誇っている。
本稿では,深層学習に基づく虹彩認識の展開を要約するために120の関連論文を収集した。
論文 参考訳(メタデータ) (2023-03-15T10:45:21Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
特に畳み込みニューラルネットワーク(CNN)を用いた単一画像超解像技術が出現している
本研究では, 虹彩認識のためのCNNを用いて, 単一画像の超解像を探索する。
彼らは、近赤外線虹彩画像の1.872のデータベースと携帯電話画像データベースのアプローチを検証する。
論文 参考訳(メタデータ) (2022-10-24T11:19:18Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
異なるディープラーニングアプローチを用いた畳み込みニューラルネットワーク(CNN)は、解像度の低い画像から現実的なテクスチャときめ細かい詳細を復元しようとする。
本研究は、虹彩認識環境における虹彩超解法(SR)に対するこれらのアプローチの実現可能性について検討する。
その結果,CNNと画像再投影は,認識システムの精度向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-10-20T09:46:23Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - Super-Resolution for Selfie Biometrics: Introduction and Application to
Face and Iris [67.74999528342273]
解像度の欠如は、画像ベースのバイオメトリックスの性能に悪影響を及ぼす。
超分解能技術は、特定のバイオメトリック・モダリティの画像の特異性に適応する必要がある。
本章では,顔画像と虹彩画像の超解像化における最近の進歩について概説する。
論文 参考訳(メタデータ) (2022-04-12T10:28:31Z) - Toward Accurate and Reliable Iris Segmentation Using Uncertainty
Learning [96.72850130126294]
高精度で信頼性の高いアイリスセグメンテーションのためのアイリスU変換器(アイリスUsformer)を提案する。
IrisUsformerの精度向上のために,位置感応操作と再パッケージング変圧器ブロックを採用することで精巧に設計する。
IrisUsformer は SOTA IrisParseNet の 35% MAC を用いて, セグメンテーション精度の向上を図っている。
論文 参考訳(メタデータ) (2021-10-20T01:37:19Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Segmentation-Aware and Adaptive Iris Recognition [24.125681602124477]
アイリス画像の品質は、アイリスマッチング精度を劣化させることが知られている。
眼周囲情報は本質的にそのような虹彩画像に埋め込まれており、そのような非理想的なシナリオ下で虹彩認識を支援するために利用することができる。
本稿では,より精度の低いアイリス認識のためのセグメンテーション支援適応フレームワークを提案する。
論文 参考訳(メタデータ) (2019-12-31T04:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。