論文の概要: On the Feasibility of Creating Iris Periocular Morphed Images
- arxiv url: http://arxiv.org/abs/2408.13496v1
- Date: Sat, 24 Aug 2024 06:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:19:21.618200
- Title: On the Feasibility of Creating Iris Periocular Morphed Images
- Title(参考訳): 虹彩周囲画像作成の可能性について
- Authors: Juan E. Tapia, Sebastian Gonzalez, Daniel Benalcazar, Christoph Busch,
- Abstract要約: 本研究は、画像レベルで虹彩形態を生成するためのエンドツーエンドフレームワークを提案する。
ペア対象の選択、セグメンテーション、形態形成、新しい虹彩認識システムなど、異なる段階を考慮する。
その結果,従来の虹彩認識システムと混同できる非常にリアルな画像が得られた。
- 参考スコア(独自算出の注目度): 9.021226651004055
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the last few years, face morphing has been shown to be a complex challenge for Face Recognition Systems (FRS). Thus, the evaluation of other biometric modalities such as fingerprint, iris, and others must be explored and evaluated to enhance biometric systems. This work proposes an end-to-end framework to produce iris morphs at the image level, creating morphs from Periocular iris images. This framework considers different stages such as pair subject selection, segmentation, morph creation, and a new iris recognition system. In order to create realistic morphed images, two approaches for subject selection are explored: random selection and similar radius size selection. A vulnerability analysis and a Single Morphing Attack Detection algorithm were also explored. The results show that this approach obtained very realistic images that can confuse conventional iris recognition systems.
- Abstract(参考訳): ここ数年、顔認識システム(FRS)の複雑な課題として、顔の変形が示されている。
したがって,指紋,虹彩,その他の生体特性の評価は,生体システムを強化するために検討され,評価されなければならない。
本研究は、画像レベルで虹彩形態を生成するためのエンドツーエンドのフレームワークを提案し、眼周囲虹彩画像から虹彩形態を生成する。
このフレームワークは、ペア対象の選択、セグメンテーション、形態形成、新しい虹彩認識システムなど、さまざまな段階を考慮している。
現実的な形態画像を作成するために、ランダムな選択と類似の半径サイズ選択という2つの対象選択法が検討されている。
また,脆弱性解析と単一モーフィング検出アルゴリズムについても検討した。
その結果,従来の虹彩認識システムと混同できる非常にリアルな画像が得られた。
関連論文リスト
- EyePreserve: Identity-Preserving Iris Synthesis [8.973296574093506]
本稿では,アイリス画像の完全データ駆動型,アイデンティティ保存型,瞳孔径変化型合成法を提案する。
提案手法の直接的な応用は、(a)虹彩認識のための既存の生体計測データセットの合成、または強化、および(b)瞳孔拡張に有意な差がある虹彩画像対を調べるための法医学の専門家を支援することである。
論文 参考訳(メタデータ) (2023-12-19T10:29:29Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
顔偽造認識法は一度に1つの顔しか処理できない。
ほとんどの顔偽造認識法は一度に1つの顔しか処理できない。
マルチフェイスフォージェリ検出のためのエンドツーエンドフレームワークであるCOMICSを提案する。
論文 参考訳(メタデータ) (2023-08-03T03:37:13Z) - Periocular biometrics: databases, algorithms and directions [69.35569554213679]
近視バイオメトリックスは、制御されていない条件下での虹彩や顔のシステムの性能に関する懸念から、独立したモダリティとして確立されている。
本稿では, 近視バイオメトリックス研究における最先端技術について概説する。
論文 参考訳(メタデータ) (2023-07-26T11:14:36Z) - Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation [0.0]
現代の虹彩認識のアプローチでは、深層学習を用いて虹彩の有効部分を眼の他の部分から切り離す。
本稿では,新しいデータ拡張手法を導入することにより,虹彩意味分節システムの精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2022-12-24T13:31:56Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
異なるディープラーニングアプローチを用いた畳み込みニューラルネットワーク(CNN)は、解像度の低い画像から現実的なテクスチャときめ細かい詳細を復元しようとする。
本研究は、虹彩認識環境における虹彩超解法(SR)に対するこれらのアプローチの実現可能性について検討する。
その結果,CNNと画像再投影は,認識システムの精度向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-10-20T09:46:23Z) - Two-headed eye-segmentation approach for biometric identification [3.4998703934432682]
本稿では,2つの異なるデコードモジュールを用いて眼球成分とアイラッシュを分割する新しい2つの頭部アーキテクチャを提案する。
両面アプローチにより,先行した凸によるモデルの品質評価も可能となった。
実環境における様々な学習シナリオについて,高分解能近赤外虹彩画像を用いて広範囲に評価を行った。
論文 参考訳(メタデータ) (2022-09-30T13:52:03Z) - DeformIrisNet: An Identity-Preserving Model of Iris Texture Deformation [4.142375560633827]
アイリス認識の主流となるアプローチでは、リング状のアイリス領域のサイズは正準長方形に線形にスケールされる。
データから直接アイリステクスチャの特徴の複雑な動きを効果的に学習できる新しいディープオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2022-07-18T23:23:23Z) - Super-Resolution for Selfie Biometrics: Introduction and Application to
Face and Iris [67.74999528342273]
解像度の欠如は、画像ベースのバイオメトリックスの性能に悪影響を及ぼす。
超分解能技術は、特定のバイオメトリック・モダリティの画像の特異性に適応する必要がある。
本章では,顔画像と虹彩画像の超解像化における最近の進歩について概説する。
論文 参考訳(メタデータ) (2022-04-12T10:28:31Z) - Direct attacks using fake images in iris verification [59.68607707427014]
BioSecベースラインデータベースの実際のアイリスから偽アイリス画像のデータベースが作成されている。
本システムは直接攻撃に対して脆弱であることを示し,対策の重要性を指摘する。
論文 参考訳(メタデータ) (2021-10-30T05:01:06Z) - Iris Recognition Based on SIFT Features [63.07521951102555]
アイリス画像の認識にはSIFT(Scale Invariant Feature Transformation)を用いる。
我々は、SIFT演算子を用いて、スケール空間における特徴SIFT特徴点を抽出し、特徴点周辺のテクスチャ情報に基づいてマッチングを行う。
また、SIFT手法と、極座標変換とLog-Gaborウェーブレットに基づく一般的なマッチング手法の相補性を示す。
論文 参考訳(メタデータ) (2021-10-30T04:55:33Z) - Segmentation-Aware and Adaptive Iris Recognition [24.125681602124477]
アイリス画像の品質は、アイリスマッチング精度を劣化させることが知られている。
眼周囲情報は本質的にそのような虹彩画像に埋め込まれており、そのような非理想的なシナリオ下で虹彩認識を支援するために利用することができる。
本稿では,より精度の低いアイリス認識のためのセグメンテーション支援適応フレームワークを提案する。
論文 参考訳(メタデータ) (2019-12-31T04:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。