LMFLOSS: A Hybrid Loss For Imbalanced Medical Image Classification
- URL: http://arxiv.org/abs/2212.12741v2
- Date: Fri, 6 Sep 2024 13:49:30 GMT
- Title: LMFLOSS: A Hybrid Loss For Imbalanced Medical Image Classification
- Authors: Abu Adnan Sadi, Labib Chowdhury, Nusrat Jahan, Mohammad Newaz Sharif Rafi, Radeya Chowdhury, Faisal Ahamed Khan, Nabeel Mohammed,
- Abstract summary: We propose a novel framework called Large Margin aware (LMF) loss to mitigate the class imbalance problem in medical imaging datasets.
This framework harnesses the distinct characteristics of both loss functions by enforcing wider margins for minority classes.
We provide empirical evidence that our proposed framework consistently outperforms other baseline methods.
- Score: 2.4866930218890837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With advances in digital technology, the classification of medical images has become a crucial step for image-based clinical decision support systems. Automatic medical image classification represents a pivotal domain where the use of AI holds the potential to create a significant social impact. However, several challenges act as obstacles to the development of practical and effective solutions. One of these challenges is the prevalent class imbalance problem in most medical imaging datasets. As a result, existing AI techniques, particularly deep-learning-based methodologies, often underperform in such scenarios. In this study, we propose a novel framework called Large Margin aware Focal (LMF) loss to mitigate the class imbalance problem in medical imaging. The LMF loss represents a linear combination of two loss functions optimized by two hyperparameters. This framework harnesses the distinct characteristics of both loss functions by enforcing wider margins for minority classes while simultaneously emphasizing challenging samples found in the datasets. We perform rigorous experiments on three neural network architectures and with four medical imaging datasets. We provide empirical evidence that our proposed framework consistently outperforms other baseline methods, showing an improvement of 2%-9% in macro-f1 scores. Through class-wise analysis of f1 scores, we also demonstrate how the proposed framework can significantly improve performance for minority classes. The results of our experiments show that our proposed framework can perform consistently well across different architectures and datasets. Overall, our study demonstrates a simple and effective approach to addressing the class imbalance problem in medical imaging datasets. We hope our work will inspire new research toward a more generalized approach to medical image classification.
Related papers
- Text-guided Foundation Model Adaptation for Long-Tailed Medical Image Classification [4.6651139122498]
In medical contexts, the imbalanced data distribution in long-tailed datasets, due to scarce labels for rare diseases, greatly impairs the diagnostic accuracy of deep learning models.
Recent multimodal text-image supervised foundation models offer new solutions to data scarcity through effective representation learning.
We propose a novel Text-guided Foundation model Adaptation for Long-Tailed medical image classification (TFA-LT)
Our method achieves an accuracy improvement of up to 27.1%, highlighting the substantial potential of foundation model adaptation in this area.
arXiv Detail & Related papers (2024-08-27T04:18:18Z) - MindShot: Brain Decoding Framework Using Only One Image [21.53687547774089]
MindShot is proposed to achieve effective few-shot brain decoding by leveraging cross-subject prior knowledge.
New subjects and pretrained individuals only need to view images of the same semantic class, significantly expanding the model's applicability.
arXiv Detail & Related papers (2024-05-24T07:07:06Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI [1.049712834719005]
We present a novel method to automatically classify medical images that learns and leverages weak causal signals in the image.
Our framework consists of a convolutional neural network backbone and a causality-extractor module.
Our findings show that causal relationships among features play a crucial role in enhancing the model's ability to discern relevant information.
arXiv Detail & Related papers (2023-09-19T16:08:33Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - SF2Former: Amyotrophic Lateral Sclerosis Identification From
Multi-center MRI Data Using Spatial and Frequency Fusion Transformer [3.408266725482757]
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder involving motor neuron degeneration.
Deep learning has turned into a prominent class of machine learning programs in computer vision.
This study introduces a framework named SF2Former that leverages vision transformer architecture's power to distinguish the ALS subjects from the control group.
arXiv Detail & Related papers (2023-02-21T18:16:20Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
We propose embedding metric learning into the first stage of the two-stage framework specially to help the feature extractor learn to extract more discriminative feature representations.
Experiments mainly on three medical image datasets show that the proposed approach consistently outperforms existing onestage and two-stage approaches.
arXiv Detail & Related papers (2022-07-14T14:57:01Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.