A Lightweight Reconstruction Network for Surface Defect Inspection
- URL: http://arxiv.org/abs/2212.12878v1
- Date: Sun, 25 Dec 2022 08:59:15 GMT
- Title: A Lightweight Reconstruction Network for Surface Defect Inspection
- Authors: Chao Hu, Jian Yao, Weijie Wu, Weibin Qiu and Liqiang Zhu
- Abstract summary: This paper proposes an unsupervised defect detection algorithm based on a reconstruction network.
The reconstruction network is designed through a fully convolutional autoencoder with a lightweight structure.
The results show that the unsupervised defect detection algorithm of the reconstructed network has strong robustness and accuracy.
- Score: 3.6823636353870954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, most deep learning methods cannot solve the problem of scarcity of
industrial product defect samples and significant differences in
characteristics. This paper proposes an unsupervised defect detection algorithm
based on a reconstruction network, which is realized using only a large number
of easily obtained defect-free sample data. The network includes two parts:
image reconstruction and surface defect area detection. The reconstruction
network is designed through a fully convolutional autoencoder with a
lightweight structure. Only a small number of normal samples are used for
training so that the reconstruction network can be A defect-free reconstructed
image is generated. A function combining structural loss and $\mathit{L}1$ loss
is proposed as the loss function of the reconstruction network to solve the
problem of poor detection of irregular texture surface defects. Further, the
residual of the reconstructed image and the image to be tested is used as the
possible region of the defect, and conventional image operations can realize
the location of the fault. The unsupervised defect detection algorithm of the
proposed reconstruction network is used on multiple defect image sample sets.
Compared with other similar algorithms, the results show that the unsupervised
defect detection algorithm of the reconstructed network has strong robustness
and accuracy.
Related papers
- Multi-feature Reconstruction Network using Crossed-mask Restoration for Unsupervised Industrial Anomaly Detection [4.742650815342744]
Unsupervised anomaly detection is of great significance for quality inspection in industrial manufacturing.
We propose a multi-feature reconstruction network, MFRNet, using crossed-mask restoration in this paper.
Our method is highly competitive with or significantly outperforms other state-of-the-arts on four public available datasets and one self-made dataset.
arXiv Detail & Related papers (2024-04-20T05:13:56Z) - Enhancing signal detectability in learning-based CT reconstruction with
a model observer inspired loss function [0.26249027950824505]
We introduce a novel training loss inspired by the model observer framework to enhance the detectability of weak signals in the reconstructions.
We evaluate our approach on the reconstruction of synthetic sparse-view breast CT data, and demonstrate an improvement in signal detectability with the proposed loss.
arXiv Detail & Related papers (2024-02-15T15:18:06Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Anomaly Detection By Autoencoder Based On Weighted Frequency Domain Loss [1.0312968200748116]
In image anomaly detection, Autoencoders are the popular methods that reconstruct the input image that might contain anomalies and output a clean image with no abnormalities.
In this paper, we show our method's superiority over the conventional Autoencoder methods by comparing it with AUROC on the MVTec AD dataset.
arXiv Detail & Related papers (2021-05-21T09:10:36Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - Improved anomaly detection by training an autoencoder with skip
connections on images corrupted with Stain-shaped noise [25.85927871251385]
anomaly detection relies on the reconstruction residual or, alternatively, on the reconstruction uncertainty.
We consider an autoencoder architecture with skip connections to improve the sharpness of the reconstruction.
We show that this model favors the reconstruction of clean images from arbitrary real-world images, regardless of the actual defects appearance.
arXiv Detail & Related papers (2020-08-29T13:50:49Z) - Encoding Structure-Texture Relation with P-Net for Anomaly Detection in
Retinal Images [42.700275429734205]
Anomaly detection in retinal image refers to the identification of abnormality caused by various retinal diseases/lesions.
We propose to leverage the relation between the image texture and structure to design a deep neural network for anomaly detection.
arXiv Detail & Related papers (2020-08-09T02:59:33Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
We propose a reusable sample selection and correction approach, termed as CRSSC, for coping with label noise in training deep FG models with web images.
Our key idea is to additionally identify and correct reusable samples, and then leverage them together with clean examples to update the networks.
arXiv Detail & Related papers (2020-08-06T02:07:21Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.