Bias Mitigation Framework for Intersectional Subgroups in Neural
Networks
- URL: http://arxiv.org/abs/2212.13014v1
- Date: Mon, 26 Dec 2022 04:58:11 GMT
- Title: Bias Mitigation Framework for Intersectional Subgroups in Neural
Networks
- Authors: Narine Kokhlikyan, Bilal Alsallakh, Fulton Wang, Vivek Miglani, Oliver
Aobo Yang and David Adkins
- Abstract summary: We propose a fairness-aware learning framework that mitigates intersectional subgroup bias associated with protected attributes.
We demonstrate that our approach is effective in reducing bias with little or no drop in accuracy.
- Score: 4.757729624205252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a fairness-aware learning framework that mitigates intersectional
subgroup bias associated with protected attributes. Prior research has
primarily focused on mitigating one kind of bias by incorporating complex
fairness-driven constraints into optimization objectives or designing
additional layers that focus on specific protected attributes. We introduce a
simple and generic bias mitigation approach that prevents models from learning
relationships between protected attributes and output variable by reducing
mutual information between them. We demonstrate that our approach is effective
in reducing bias with little or no drop in accuracy. We also show that the
models trained with our learning framework become causally fair and insensitive
to the values of protected attributes. Finally, we validate our approach by
studying feature interactions between protected and non-protected attributes.
We demonstrate that these interactions are significantly reduced when applying
our bias mitigation.
Related papers
- Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - Mitigating Feature Gap for Adversarial Robustness by Feature
Disentanglement [61.048842737581865]
Adversarial fine-tuning methods aim to enhance adversarial robustness through fine-tuning the naturally pre-trained model in an adversarial training manner.
We propose a disentanglement-based approach to explicitly model and remove the latent features that cause the feature gap.
Empirical evaluations on three benchmark datasets demonstrate that our approach surpasses existing adversarial fine-tuning methods and adversarial training baselines.
arXiv Detail & Related papers (2024-01-26T08:38:57Z) - Estimating and Implementing Conventional Fairness Metrics With
Probabilistic Protected Features [7.457585597068654]
We develop methods for measuring and reducing violations in a setting with limited attribute labels.
We show our measurement method can bound the true disparity up to 5.5x tighter than previous methods in these applications.
arXiv Detail & Related papers (2023-10-02T22:30:25Z) - Group fairness without demographics using social networks [29.073125057536014]
Group fairness is a popular approach to prevent unfavorable treatment of individuals based on sensitive attributes such as race, gender, and disability.
We propose a "group-free" measure of fairness that does not rely on sensitive attributes and, instead, is based on homophily in social networks.
arXiv Detail & Related papers (2023-05-19T00:45:55Z) - Using Positive Matching Contrastive Loss with Facial Action Units to
mitigate bias in Facial Expression Recognition [6.015556590955814]
We propose to mitigate bias by guiding the model's focus towards task-relevant features using domain knowledge.
We show that incorporating task-relevant features via our method can improve model fairness at minimal cost to classification performance.
arXiv Detail & Related papers (2023-03-08T21:28:02Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
We propose a principled underlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN) loss to debias the classification head.
arXiv Detail & Related papers (2022-10-12T23:39:28Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
We construct a novel probabilistic graphical model that effectively incorporates the low rank promoting prior into the framework of contrastive learning.
Our hypothesis explicitly requires that all the samples belonging to the same instance class lie on the same subspace with small dimension.
Empirical evidences show that the proposed algorithm clearly surpasses the state-of-the-art approaches on multiple benchmarks.
arXiv Detail & Related papers (2021-08-05T15:58:25Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
adversarial vulnerability of deep neural networks has attracted significant attention in machine learning.
We propose to incorporate causality into mitigating adversarial vulnerability.
Our method can be seen as the first attempt to leverage causality for mitigating adversarial vulnerability.
arXiv Detail & Related papers (2021-06-11T06:55:02Z) - Fair Classification with Adversarial Perturbations [35.030329189029246]
We study fair classification in the presence of an omniscient adversary that, given an $eta$, is allowed to choose an arbitrary $eta$-fraction of the training samples and arbitrarily perturb their protected attributes.
Our main contribution is an optimization framework to learn fair classifiers in this adversarial setting that comes with provable guarantees on accuracy and fairness.
We prove near-tightness of our framework's guarantees for natural hypothesis classes: no algorithm can have significantly better accuracy and any algorithm with better fairness must have lower accuracy.
arXiv Detail & Related papers (2021-06-10T17:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.