Quaternion Backpropagation
- URL: http://arxiv.org/abs/2212.13082v1
- Date: Mon, 26 Dec 2022 10:56:19 GMT
- Title: Quaternion Backpropagation
- Authors: Johannes P\"oppelbaum, Andreas Schwung
- Abstract summary: We show that product- and chain-rule does not hold with quaternion backpropagation.
We experimentally prove the functionality of the derived quaternion backpropagation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quaternion valued neural networks experienced rising popularity and interest
from researchers in the last years, whereby the derivatives with respect to
quaternions needed for optimization are calculated as the sum of the partial
derivatives with respect to the real and imaginary parts. However, we can show
that product- and chain-rule does not hold with this approach. We solve this by
employing the GHRCalculus and derive quaternion backpropagation based on this.
Furthermore, we experimentally prove the functionality of the derived
quaternion backpropagation.
Related papers
- Improving Quaternion Neural Networks with Quaternionic Activation Functions [3.8750364147156247]
We propose novel quaternion activation functions where we modify either the quaternion magnitude or the phase.
The proposed activation functions can be incorporated in arbitrary quaternion valued neural networks trained with gradient descent techniques.
arXiv Detail & Related papers (2024-06-24T09:36:58Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Learning Dynamical Systems via Koopman Operator Regression in
Reproducing Kernel Hilbert Spaces [52.35063796758121]
We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system.
We link the risk with the estimation of the spectral decomposition of the Koopman operator.
Our results suggest RRR might be beneficial over other widely used estimators.
arXiv Detail & Related papers (2022-05-27T14:57:48Z) - Convergence bounds for nonlinear least squares and applications to
tensor recovery [0.0]
We consider the problem of approximating a function in general nonlinear subsets of $L2$ when only a weighted Monte Carlo estimate of the $L2$-norm can be computed.
A critical analysis of our results allows us to derive a sample efficient algorithm for the model set of low-rank tensors.
arXiv Detail & Related papers (2021-08-11T14:14:02Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
We study the posterior contraction rates of a Bayesian method with Gaussian process priors in nonparametric regression.
For a general class of kernels, we establish convergence rates of the posterior measure of the regression function and its derivatives.
Our proof shows that, under certain conditions, to any convergence rate of Bayes estimators there corresponds the same convergence rate of the posterior distributions.
arXiv Detail & Related papers (2020-11-27T19:11:56Z) - A Quaternion-Valued Variational Autoencoder [15.153617649974263]
variational autoencoders (VAEs) have proved their ability in modeling a generative process by learning a latent representation of the input.
We propose a novel VAE defined in the quaternion domain, which exploits the properties of quaternion algebra to improve performance.
arXiv Detail & Related papers (2020-10-22T12:33:42Z) - Analytically projected rotationally symmetric explicitly correlated
Gaussian Functions with one-axis-shifted centers [0.0]
A new functional form is presented for expanding the wave function of an N-particle system with arbitrary angular momentum and parity.
We show how the new formalism can be used as a unified framework for high-accuracy calculations of properties of small atoms and molecules.
arXiv Detail & Related papers (2020-04-30T20:38:09Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.