Derivation of the Schr\"odinger equation from QED
- URL: http://arxiv.org/abs/2212.13103v1
- Date: Fri, 23 Dec 2022 13:48:56 GMT
- Title: Derivation of the Schr\"odinger equation from QED
- Authors: Spyros Efthimiades
- Abstract summary: The Schr"odinger equation relates the electron wavefunction and the electric potential.
We show that, in low energy interactions, the electric potential accurately represents the contributions of the intermediate photon exchanges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Schr\"odinger equation relates the electron wavefunction and the electric
potential, which are emergent physical quantities. At that emergent level, the
Schr\"odinger equation is either postulated as a principle of quantum physics
or obtained heuristically. However, the Schr\"odinger equation is a low energy
condition we can derive from the foundations of QED. Due to the small value of
the electromagnetic coupling constant, we show that, in low energy
interactions, the electric potential accurately represents the contributions of
the intermediate photon exchanges. Then, we see that the dominant term of the
electron wavefunction is a superposition of plane (but not free) waves which,
by fulfilling the total energy relations, satisfies the Schr\"odinger, Pauli,
and Dirac equations. Furthermore, we show that what is considered the kinetic
energy term of the Schr\"odinger equation does not represent the kinetic energy
of the interacting electron. We analyze and clarify the dynamics of the
Schr\"odinger equation.
Related papers
- Analytically exact solution of the Schrodinger equation for neutral helium in the ground state [0.0]
This report presents the analytical solution of the Schrodinger equation and its corresponding wave function for the neutral helium or helium-like atoms in the ground state.
arXiv Detail & Related papers (2024-06-05T07:35:00Z) - The p-Adic Schrödinger Equation and the Two-slit Experiment in Quantum Mechanics [0.0]
p-Adic quantum mechanics is constructed from the Dirac-von Neumann axioms.
The p-adic quantum mechanics is motivated by the question: what happens with the standard quantum mechanics if the space has a discrete nature?
arXiv Detail & Related papers (2023-08-02T17:10:10Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Fields and Equations of Classical Mechanics for Quantum Mechanics [0.0]
An equation is also derived that is equivalent to the main equation of Bohmian mechanics.
For one-body systems, the Eulerian Eq. can model either a fluid or particle description of quantum states.
arXiv Detail & Related papers (2022-07-09T23:28:27Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - The energy level structure of the modified Schrodinger equation can be
consistent with Lamb shift [3.15463184697502]
In the literature of calculating atomic and molecular structures, most Schrodinger equations are described by Coulomb potential.
In fact, the calculation accuracy of these Schrodinger equations is not consistent with Lamb shift.
In the traditional ab initio calculation of quantum mechanics, it is common and necessary to use Dirac theory or quantum electrodynamics to correct the energy level of Schrodinger equation.
arXiv Detail & Related papers (2022-01-25T08:42:43Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Viewing quantum mechanics through the prism of electromagnetism [0.0]
We demonstrate novel relationships between quantum mechanics and the electromagnetic wave equation.
In our approach, an invariant interference-dependent electromagnetic quantity, which we call "quantum rest mass", replaces the conventional role of the inertial rest mass.
arXiv Detail & Related papers (2021-02-08T16:15:08Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.