Large Language Models Encode Clinical Knowledge
- URL: http://arxiv.org/abs/2212.13138v1
- Date: Mon, 26 Dec 2022 14:28:24 GMT
- Title: Large Language Models Encode Clinical Knowledge
- Authors: Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei,
Hyung Won Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen
Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble, Chris Kelly, Nathaneal
Scharli, Aakanksha Chowdhery, Philip Mansfield, Blaise Aguera y Arcas, Dale
Webster, Greg S. Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad
Tomasev, Yun Liu, Alvin Rajkomar, Joelle Barral, Christopher Semturs, Alan
Karthikesalingam, Vivek Natarajan
- Abstract summary: Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation.
We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias.
We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning.
- Score: 21.630872464930587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities in
natural language understanding and generation, but the quality bar for medical
and clinical applications is high. Today, attempts to assess models' clinical
knowledge typically rely on automated evaluations on limited benchmarks. There
is no standard to evaluate model predictions and reasoning across a breadth of
tasks. To address this, we present MultiMedQA, a benchmark combining six
existing open question answering datasets spanning professional medical exams,
research, and consumer queries; and HealthSearchQA, a new free-response dataset
of medical questions searched online. We propose a framework for human
evaluation of model answers along multiple axes including factuality,
precision, possible harm, and bias. In addition, we evaluate PaLM (a
540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on
MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves
state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA,
MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US
Medical License Exam questions), surpassing prior state-of-the-art by over 17%.
However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve
this we introduce instruction prompt tuning, a parameter-efficient approach for
aligning LLMs to new domains using a few exemplars. The resulting model,
Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show
that comprehension, recall of knowledge, and medical reasoning improve with
model scale and instruction prompt tuning, suggesting the potential utility of
LLMs in medicine. Our human evaluations reveal important limitations of today's
models, reinforcing the importance of both evaluation frameworks and method
development in creating safe, helpful LLM models for clinical applications.
Related papers
- MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
We introduce MEDIC, a framework assessing Large Language Models (LLMs) across five critical dimensions of clinical competence.
We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks.
Results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths.
arXiv Detail & Related papers (2024-09-11T14:44:51Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - MedExQA: Medical Question Answering Benchmark with Multiple Explanations [2.2246416434538308]
This paper introduces MedExQA, a novel benchmark in medical question-answering to evaluate large language models' (LLMs) understanding of medical knowledge through explanations.
By constructing datasets across five distinct medical specialties, we address a major gap in current medical QA benchmarks.
Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology.
arXiv Detail & Related papers (2024-06-10T14:47:04Z) - OLAPH: Improving Factuality in Biomedical Long-form Question Answering [15.585833125854418]
We introduce MedLFQA, a benchmark dataset reconstructed using long-form question-answering datasets related to the biomedical domain.
We also propose OLAPH, a simple and novel framework that utilizes cost-effective and multifaceted automatic evaluation.
Our findings reveal that a 7B LLM trained with our OLAPH framework can provide long answers comparable to the medical experts' answers in terms of factuality.
arXiv Detail & Related papers (2024-05-21T11:50:16Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Emulating Human Cognitive Processes for Expert-Level Medical
Question-Answering with Large Language Models [0.23463422965432823]
BooksMed is a novel framework based on a Large Language Model (LLM)
It emulates human cognitive processes to deliver evidence-based and reliable responses.
We present ExpertMedQA, a benchmark comprised of open-ended, expert-level clinical questions.
arXiv Detail & Related papers (2023-10-17T13:39:26Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
Large language models (LLMs) often suffer from hallucinations, leading to overly confident but incorrect judgments.
This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations.
arXiv Detail & Related papers (2023-09-05T09:24:48Z) - Med-Flamingo: a Multimodal Medical Few-shot Learner [58.85676013818811]
We propose Med-Flamingo, a multimodal few-shot learner adapted to the medical domain.
Based on OpenFlamingo-9B, we continue pre-training on paired and interleaved medical image-text data from publications and textbooks.
We conduct the first human evaluation for generative medical VQA where physicians review the problems and blinded generations in an interactive app.
arXiv Detail & Related papers (2023-07-27T20:36:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.