論文の概要: Modeling Time-Series and Spatial Data for Recommendations and Other
Applications
- arxiv url: http://arxiv.org/abs/2212.13259v1
- Date: Sun, 25 Dec 2022 09:34:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 16:13:41.506062
- Title: Modeling Time-Series and Spatial Data for Recommendations and Other
Applications
- Title(参考訳): 勧告等のための時系列・空間データのモデリング
- Authors: Vinayak Gupta
- Abstract要約: 我々は,CTESデータの品質が低いために発生する可能性のある問題をレコメンデーションシステムに入力する。
CTESデータの質を向上させるため、時間的シーケンスにおける欠落イベントを克服する根本的な問題に対処する。
我々は、大規模CTES検索と人間の活動予測のためのソリューションの設計にそれらの能力を拡張した。
- 参考スコア(独自算出の注目度): 1.713291434132985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the research directions described in this thesis, we seek to address the
critical challenges in designing recommender systems that can understand the
dynamics of continuous-time event sequences. We follow a ground-up approach,
i.e., first, we address the problems that may arise due to the poor quality of
CTES data being fed into a recommender system. Later, we handle the task of
designing accurate recommender systems. To improve the quality of the CTES
data, we address a fundamental problem of overcoming missing events in temporal
sequences. Moreover, to provide accurate sequence modeling frameworks, we
design solutions for points-of-interest recommendation, i.e., models that can
handle spatial mobility data of users to various POI check-ins and recommend
candidate locations for the next check-in. Lastly, we highlight that the
capabilities of the proposed models can have applications beyond recommender
systems, and we extend their abilities to design solutions for large-scale CTES
retrieval and human activity prediction. A significant part of this thesis uses
the idea of modeling the underlying distribution of CTES via neural marked
temporal point processes (MTPP). Traditional MTPP models are stochastic
processes that utilize a fixed formulation to capture the generative mechanism
of a sequence of discrete events localized in continuous time. In contrast,
neural MTPP combine the underlying ideas from the point process literature with
modern deep learning architectures. The ability of deep-learning models as
accurate function approximators has led to a significant gain in the predictive
prowess of neural MTPP models. In this thesis, we utilize and present several
neural network-based enhancements for the current MTPP frameworks for the
aforementioned real-world applications.
- Abstract(参考訳): 本論文では,連続時間イベント列のダイナミクスを理解できるレコメンダシステムの設計における重要な課題について考察する。
まず,cteデータの低品質がレコメンダシステムに供給されることによって生じる可能性のある問題に対処する。
その後、正確なレコメンダシステムを設計するタスクを処理します。
ctesデータの品質を向上させるため,時間系列における欠落事象を克服する根本的な問題に対処する。
さらに,正確なシーケンスモデリングフレームワークを提供するために,ユーザの空間的モビリティデータを様々なPOIチェックインに処理できるモデルや,次のチェックインの候補場所を推薦する手法を設計する。
最後に,提案モデルが推奨システムを超えて応用できることを強調し,大規模CTES検索と人間の活動予測のためのソリューションの設計にそれらの能力を拡張した。
この論文の重要な部分は、MTPP (Neural marked temporal point process) を通じてCTESの基盤となる分布をモデル化するものである。
従来のMTPPモデルは、固定定式化を利用して連続的に局所化された離散事象列の生成機構を捉える確率過程である。
対照的に、neural mtppはポイントプロセス文学の基本概念と現代のディープラーニングアーキテクチャを結合している。
正確な関数近似器としてのディープラーニングモデルの能力は、ニューラルMTPPモデルの予測能力を大きく向上させた。
本論文では,既存のMTPPフレームワークに対して,ニューラルネットワークによるいくつかの拡張を実世界のアプリケーションに適用し,提示する。
関連論文リスト
- AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining [5.2863523790908955]
本稿では,多次元時系列解析における従来の手法の限界に対処する新しい表現モデルを提案する。
提案するフレームワークは,ITインフラの監視と最適化,継続的な患者モニタリングによる診断,トレンド分析,インターネットビジネスによるユーザ行動の追跡,予測など,さまざまな分野のアプリケーションに対して大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-09-22T06:27:07Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Data-driven Preference Learning Methods for Sorting Problems with
Multiple Temporal Criteria [17.673512636899076]
本研究では,時間的基準が存在する場合の複数基準ソート問題に対する新しい選好学習手法を提案する。
スケーラビリティを向上し、学習可能な時間割引要素に対応するため、新しい単調リカレントニューラルネットワーク(mRNN)を導入する。
提案するmRNNは、時間とともに、限界値関数とパーソナライズされた時間割引係数を記述することにより、好みのダイナミクスを記述することができる。
論文 参考訳(メタデータ) (2023-09-22T05:08:52Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - On the Predictive Accuracy of Neural Temporal Point Process Models for
Continuous-time Event Data [3.13468877208035]
時間的ポイントプロセス(TPP)は、非同期イベントシーケンスを連続的にモデル化するための標準的な数学的フレームワークとして機能する。
ニューラルネットワークのパラメトリゼーションを活用し、より柔軟で効率的なモデリングを提供するNeural TPPを提案する。
本研究では,最先端のニューラルTPPモデルの予測精度を系統的に評価する。
論文 参考訳(メタデータ) (2023-06-29T16:14:43Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
我々は、深部生成モデルと状態空間モデル(SSM)の両方の進歩を組み合わせて、新しいデータ駆動の深部確率的シーケンスモデルを考え出す。
特に、リカレントニューラルネットワーク(RNN)を用いた変動配列モデルを構築するために、一般的なエンコーダデコーダ生成構造に従う。
トレーニングと予測の不整合を緩和するために,次のステップでハイブリッド出力を入力として使用することを提案する。
論文 参考訳(メタデータ) (2021-06-03T23:41:11Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。