Artificial Intelligence to Enhance Mission Science Output for In-situ
Observations: Dealing with the Sparse Data Challenge
- URL: http://arxiv.org/abs/2212.13289v1
- Date: Mon, 26 Dec 2022 20:05:21 GMT
- Title: Artificial Intelligence to Enhance Mission Science Output for In-situ
Observations: Dealing with the Sparse Data Challenge
- Authors: M. I. Sitnov, G. K. Stephens, V. G. Merkin, C.-P. Wang, D. Turner, K.
Genestreti, M. Argall, T. Y. Chen, A. Y. Ukhorskiy, S. Wing, Y.-H. Liu
- Abstract summary: In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time.
New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, will need to be developed to meet this Sparse Data challenge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the Earth's magnetosphere, there are fewer than a dozen dedicated probes
beyond low-Earth orbit making in-situ observations at any given time. As a
result, we poorly understand its global structure and evolution, the mechanisms
of its main activity processes, magnetic storms, and substorms. New Artificial
Intelligence (AI) methods, including machine learning, data mining, and data
assimilation, as well as new AI-enabled missions will need to be developed to
meet this Sparse Data challenge.
Related papers
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - Towards a Reliable Offline Personal AI Assistant for Long Duration Spaceflight [4.382282101149638]
This paper proposes enhancing systems like METIS by integrating GPTs, Retrieval-Augmented Generation (RAG), Knowledge Graphs (KGs), and Augmented Reality (AR)
The idea is to allow astronauts to interact with their data more intuitively, using natural language queries and visualizing real-time information through AR.
arXiv Detail & Related papers (2024-10-21T18:08:42Z) - Nature-Inspired Local Propagation [68.63385571967267]
Natural learning processes rely on mechanisms where data representation and learning are intertwined in such a way as to respect locality.
We show that the algorithmic interpretation of the derived "laws of learning", which takes the structure of Hamiltonian equations, reduces to Backpropagation when the speed of propagation goes to infinity.
This opens the doors to machine learning based on full on-line information that are based the replacement of Backpropagation with the proposed local algorithm.
arXiv Detail & Related papers (2024-02-04T21:43:37Z) - There Are No Data Like More Data- Datasets for Deep Learning in Earth
Observation [6.839093061382966]
We want to put machine learning datasets dedicated to Earth observation data into the spotlight.
We hope to contribute to an understanding that the nature of our data is what distinguishes the Earth observation community.
arXiv Detail & Related papers (2023-10-30T02:19:16Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
This article gives a bird's eye view of the essential scientific tools and approaches informing and supporting the transition from raw EO data to usable EO-based information.
We cover the impact of (i) Computer vision; (ii) Machine learning; (iii) Advanced processing and computing; (iv) Knowledge-based AI; (v) Explainable AI and causal inference; (vi) Physics-aware models; (vii) User-centric approaches; and (viii) the much-needed discussion of ethical and societal issues related to the massive use of ML technologies in EO.
arXiv Detail & Related papers (2023-05-15T07:47:24Z) - Enabling Astronaut Self-Scheduling using a Robust Advanced Modelling and
Scheduling system: an assessment during a Mars analogue mission [44.621922701019336]
We study the usage of a computer decision-support tool by a crew of analog astronauts.
The proposed tool, called Romie, belongs to the new category of Robust Advanced Modelling and Scheduling (RAMS) systems.
arXiv Detail & Related papers (2023-01-14T21:10:05Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Towards a Collective Agenda on AI for Earth Science Data Analysis [39.78763440312085]
We aim to inspire researchers, especially the younger generations, to tackle these challenges for a real advance of remote sensing and the geosciences.
In our declared agenda for AI on Earth sciences, we aim to inspire researchers, especially the younger generations, to tackle these challenges for a real advance of remote sensing and the geosciences.
arXiv Detail & Related papers (2021-04-11T20:54:44Z) - Automated identification of transiting exoplanet candidates in NASA
Transiting Exoplanets Survey Satellite (TESS) data with machine learning
methods [1.9491825010518622]
The AI/ML ThetaRay system is trained initially with Kepler exoplanetary data and validated with confirmed exoplanets.
By the application of ThetaRay to 10,803 light curves of threshold crossing events (TCEs) produced by the TESS mission, we uncover 39 new exoplanetary candidates.
arXiv Detail & Related papers (2021-02-20T12:28:39Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
Batch Exploration with Examples (BEE) explores relevant regions of the state-space guided by a modest number of human provided images of important states.
BEE is able to tackle challenging vision-based manipulation tasks both in simulation and on a real Franka robot.
arXiv Detail & Related papers (2020-10-22T17:49:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.