論文の概要: A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning
- arxiv url: http://arxiv.org/abs/2212.13726v4
- Date: Fri, 4 Aug 2023 13:20:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 10:19:24.448202
- Title: A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning
- Title(参考訳): 多視点表現学習のためのクラスタリング誘導コントラスト融合
- Authors: Guanzhou Ke, Guoqing Chao, Xiaoli Wang, Chenyang Xu, Yongqi Zhu, and
Yang Yu
- Abstract要約: 本稿では、ビュー固有表現をビュー共通表現に融合する深層融合ネットワークを提案する。
また、ビュー共通表現とビュー固有表現を一致させる非対称なコントラスト戦略を設計する。
不完全な視点では,提案手法は競合相手よりもノイズ干渉に抵抗する。
- 参考スコア(独自算出の注目度): 7.630965478083513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The past two decades have seen increasingly rapid advances in the field of
multi-view representation learning due to it extracting useful information from
diverse domains to facilitate the development of multi-view applications.
However, the community faces two challenges: i) how to learn robust
representations from a large amount of unlabeled data to against noise or
incomplete views setting, and ii) how to balance view consistency and
complementary for various downstream tasks. To this end, we utilize a deep
fusion network to fuse view-specific representations into the view-common
representation, extracting high-level semantics for obtaining robust
representation. In addition, we employ a clustering task to guide the fusion
network to prevent it from leading to trivial solutions. For balancing
consistency and complementary, then, we design an asymmetrical contrastive
strategy that aligns the view-common representation and each view-specific
representation. These modules are incorporated into a unified method known as
CLustering-guided cOntrastiVE fusioN (CLOVEN). We quantitatively and
qualitatively evaluate the proposed method on five datasets, demonstrating that
CLOVEN outperforms 11 competitive multi-view learning methods in clustering and
classification. In the incomplete view scenario, our proposed method resists
noise interference better than those of our competitors. Furthermore, the
visualization analysis shows that CLOVEN can preserve the intrinsic structure
of view-specific representation while also improving the compactness of
view-commom representation. Our source code will be available soon at
https://github.com/guanzhou-ke/cloven.
- Abstract(参考訳): 過去20年間、多視点表現学習の分野では、多様なドメインから有用な情報を抽出し、多視点アプリケーションの開発を促進するために急速に進歩してきた。
しかし、コミュニティは2つの課題に直面している。
一 大量のラベルのないデータからノイズ又は不完全なビュー設定に対するロバスト表現の学習方法
二 様々な下流業務の整合性と相補性のバランスをとる方法
そこで我々はdeep fusion networkを用いてビュー固有の表現をview-common表現に融合し,高レベルセマンティクスを抽出してロバスト表現を得る。
さらに,融合ネットワークが自明な解決策に導くのを防ぐために,クラスタリングタスクを用いる。
一貫性と相補性のバランスをとるために、ビュー共通表現とビュー固有表現を整合させる非対称なコントラスト戦略を設計する。
これらのモジュールはClustering-guided cOntrastiVE fusioN (CLOVEN)として知られる統一的なメソッドに組み込まれる。
CLOVENはクラスタリングと分類において,11の競合的多視点学習方法よりも優れており,提案手法を5つのデータセット上で定量的に定性的に評価する。
不完全視シナリオでは,提案手法は競争相手よりもノイズ干渉に耐性がある。
さらに, 可視化解析により, cloven はビュー・コモム表現のコンパクト性を改善しつつ, ビュー固有表現の固有構造を保存できることを示した。
ソースコードは近くhttps://github.com/guanzhou-ke/cloven.comで入手できる。
関連論文リスト
- Multi-View Factorizing and Disentangling: A Novel Framework for Incomplete Multi-View Multi-Label Classification [9.905528765058541]
非完全多視点マルチラベル分類(iMvMLC)のための新しいフレームワークを提案する。
本手法は,多視点表現をビュー一貫性とビュー固有の2つの独立した要素に分解する。
我々のフレームワークは、一貫した表現学習を3つの重要なサブオブジェクトに革新的に分解する。
論文 参考訳(メタデータ) (2025-01-11T12:19:20Z) - Balanced Multi-view Clustering [56.17836963920012]
マルチビュークラスタリング(MvC)は、さまざまなビューからの情報を統合して、基盤となるデータ構造をキャプチャするモデルの能力を高めることを目的としている。
MvCで広く使われているジョイントトレーニングパラダイムは、多視点情報を十分に活用していない可能性がある。
本稿では,ビュー固有のコントラスト正規化(VCR)を導入し,各ビューの最適化を最適化する新しいマルチビュークラスタリング(BMvC)手法を提案する。
論文 参考訳(メタデータ) (2025-01-05T14:42:47Z) - Rethinking Multi-view Representation Learning via Distilled Disentangling [34.14711778177439]
マルチビュー表現学習は、多様なデータソースからビュー一貫性とビュー固有性の両方を持つ堅牢な表現を導出することを目的としている。
本稿では、この領域における既存のアプローチの詳細な分析を行い、ビュー一貫性とビュー固有表現の冗長性を強調した。
我々は,多視点表現学習のための革新的枠組みを提案し,これを「蒸留解離」と呼ぶ手法を取り入れた。
論文 参考訳(メタデータ) (2024-03-16T11:21:24Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
マルチビュークラスタリングのための新しいデュアルコントラストキャリブレーションネットワーク(DealMVC)を提案する。
まず、グローバルなクロスビュー特徴を得るための融合機構を設計し、その上で、ビュー特徴類似性グラフと高信頼な擬ラベルグラフを整列させることにより、グローバルなコントラストキャリブレーション損失を提案する。
トレーニング手順の間、対話型クロスビュー機能は、ローカルレベルとグローバルレベルの両方で共同最適化される。
論文 参考訳(メタデータ) (2023-08-17T14:14:28Z) - Disentangling Multi-view Representations Beyond Inductive Bias [32.15900989696017]
本稿では,表現の解釈可能性と一般化性を両立させる新しい多視点表現分離手法を提案する。
提案手法は,クラスタリングと分類性能において,12種類の比較手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T09:09:28Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
深層不完全なマルチビュークラスタリングのためのクロスビュー部分サンプルとプロトタイプアライメントネットワーク(CPSPAN)を提案する。
従来のコントラストベースの手法とは異なり、インスタンスとインスタンスの対応構築を導くために、ペア観測データアライメントを「プロキシ監視信号」として採用する。
論文 参考訳(メタデータ) (2023-03-28T02:31:57Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - MORI-RAN: Multi-view Robust Representation Learning via Hybrid
Contrastive Fusion [4.36488705757229]
多視点表現学習は、クラスタリングや分類といった多くの多視点タスクに不可欠である。
ラベルのないデータから堅牢なビュー-共通表現を抽出するハイブリッドコントラスト融合アルゴリズムを提案する。
実験の結果,提案手法は実世界の4つのデータセットにおいて,12の競合的マルチビュー手法よりも優れていた。
論文 参考訳(メタデータ) (2022-08-26T09:58:37Z) - Deep Multi-View Semi-Supervised Clustering with Sample Pairwise
Constraints [10.226754903113164]
本稿では,ネットワークファインタニングにおける3種類の損失を協調的に最適化するDMSC法を提案する。
提案手法は,最先端のマルチビューやシングルビューの競合よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-10T08:51:56Z) - Deep Partial Multi-View Learning [94.39367390062831]
クロスパーシャル・マルチビュー・ネットワーク(CPM-Nets)と呼ばれる新しいフレームワークを提案する。
我々はまず、多視点表現に対する完全性と汎用性の形式的な定義を提供する。
そして、理論的に学習された潜在表現の多元性を証明する。
論文 参考訳(メタデータ) (2020-11-12T02:29:29Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。