First-quantized eigensolver for ground and excited states of electrons
under a uniform magnetic field
- URL: http://arxiv.org/abs/2212.13800v3
- Date: Fri, 30 Jun 2023 16:00:10 GMT
- Title: First-quantized eigensolver for ground and excited states of electrons
under a uniform magnetic field
- Authors: Taichi Kosugi, Hirofumi Nishi, Yu-ichiro Matsushita
- Abstract summary: First-quantized eigensolver (FQE) is a recently proposed framework of quantum computation.
We propose a method for introducing a uniform magnetic field to an FQE calculation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: First-quantized eigensolver (FQE) is a recently proposed framework of quantum
computation for obtaining the ground state of an interacting electronic system
based on probabilistic imaginary-time evolution. In this study, we propose a
method for introducing a uniform magnetic field to an FQE calculation. We
demonstrate via resource estimation that the additional circuit responsible for
the magnetic field can be implemented with a liner depth in terms of the number
of qubits assigned to each electron, giving rise to no impact on the leading
order of whole computational cost. We confirm the validity of our method via
numerical simulations for ground and excited states by employing the filtration
circuits for energy eigenstates. We also provide the generic construction of
derivative circuits together with measurement-based formulae. As a special case
of them, we can obtain the electric-current density in an electronic system to
get insights into the microscopic origin of magnetic response.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Estimation of electrostatic interaction energies on a trapped-ion
quantum computer [29.884106383002205]
We present the first hardware implementation of electrostatic interaction energies using a trapped-ion quantum computer.
The quantum computer is used to generate an approximate ground state within the active space.
arXiv Detail & Related papers (2023-12-22T14:46:41Z) - Quantum magnetometry using discrete-time quantum walk [2.732919960807485]
We propose a scheme for quantum magnetometry using discrete-time quantum walk (DTQW)
The dynamics of a spin-half particle implementing DTQW on a one-dimensional lattice gets affected by magnetic fields.
We find that one can use the position and spin measurements to estimate the strengths of the magnetic fields.
arXiv Detail & Related papers (2023-11-27T13:23:33Z) - Non-Uniform Magnetic Fields for Single-Electron Control [0.0]
A gauge-invariant formulation of the Wigner equation for general electromagnetic fields has been proposed.
We generalize this equation to include a general, non-uniform electric field and a linear, non-uniform magnetic field.
This has led to explore a new type of transport inside electronic waveguides based on snake trajectories.
arXiv Detail & Related papers (2023-11-10T19:05:54Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Accurately computing electronic properties of a quantum ring [0.08564085951364296]
We provide an experimental blueprint for an accurate condensed-matter simulator using eighteen superconducting qubits.
We benchmark the underlying method by reconstructing the single-particle band-structure of a one-dimensional wire.
We synthesize magnetic flux and disordered local potentials, two key tenets of a condensed-matter system.
arXiv Detail & Related papers (2020-12-02T01:42:20Z) - Quantum HF/DFT-Embedding Algorithms for Electronic Structure
Calculations: Scaling up to Complex Molecular Systems [0.0]
We propose the embedding of quantum electronic structure calculation into a classically computed environment.
We achieve this by constructing an effective Hamiltonian that incorporates a mean field describing the action of the inactive electrons on a selected Active Space.
arXiv Detail & Related papers (2020-09-03T18:35:50Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.