論文の概要: Multi-Realism Image Compression with a Conditional Generator
- arxiv url: http://arxiv.org/abs/2212.13824v1
- Date: Wed, 28 Dec 2022 13:56:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 15:10:39.063119
- Title: Multi-Realism Image Compression with a Conditional Generator
- Title(参考訳): 条件付き発電機によるマルチリアリズム画像圧縮
- Authors: Eirikur Agustsson, David Minnen, George Toderici, Fabian Mentzer
- Abstract要約: 生成圧縮アプローチは、レート歪み最適化モデルによって生成されるぼやけた再構成の代わりに、低ビットレートでも詳細で現実的な画像を生成する。
我々は、歪み現実主義の新たな最先端を定め、達成可能な歪み現実主義ペアのフロンティアを推し進めた。
- 参考スコア(独自算出の注目度): 28.659512668399127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By optimizing the rate-distortion-realism trade-off, generative compression
approaches produce detailed, realistic images, even at low bit rates, instead
of the blurry reconstructions produced by rate-distortion optimized models.
However, previous methods do not explicitly control how much detail is
synthesized, which results in a common criticism of these methods: users might
be worried that a misleading reconstruction far from the input image is
generated. In this work, we alleviate these concerns by training a decoder that
can bridge the two regimes and navigate the distortion-realism trade-off. From
a single compressed representation, the receiver can decide to either
reconstruct a low mean squared error reconstruction that is close to the input,
a realistic reconstruction with high perceptual quality, or anything in
between. With our method, we set a new state-of-the-art in distortion-realism,
pushing the frontier of achievable distortion-realism pairs, i.e., our method
achieves better distortions at high realism and better realism at low
distortion than ever before.
- Abstract(参考訳): レート歪み-リアリズムトレードオフを最適化することにより、生成圧縮アプローチは、レート歪み最適化モデルによって生成されたぼやけた再構成ではなく、低ビットレートでも詳細で現実的な画像を生成する。
しかし, 従来の手法では, どれだけの細部が合成されるかは明確に制御されておらず, 利用者は入力画像から遠く離れた誤解を招く再構成が生成されることを心配している。
本研究では,2つの体制を橋渡しし,歪みリアリズムのトレードオフをナビゲートするデコーダを訓練することで,これらの懸念を軽減する。
単一の圧縮された表現から、受信側は入力に近い低い平均2乗誤差再構成、高い知覚的品質の現実的再構成、あるいはその中間のあらゆるものを再構築することができる。
提案手法では,変形実数論における新たな最先端の設定を行い,実現可能な歪み実数対のフロンティア,すなわち高実数論におけるより優れた歪みと低歪み下でのより良い実数論を実現する。
関連論文リスト
- OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
現実のシナリオでは、画像障害はしばしば複合的な劣化として現れ、低光、迷路、雨、雪といった要素の複雑な相互作用を示す。
本研究では, 複雑な複合劣化シナリオを正確に表現するために, 4つの物理劣化パラダイムを統合した多目的イメージングモデルを提案する。
OneRestoreは、適応的で制御可能なシーン復元のために設計された新しいトランスフォーマーベースのフレームワークである。
論文 参考訳(メタデータ) (2024-07-05T16:27:00Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
再構成・生成拡散モデル(Reconstruct-and-Generate Diffusion Model, RnG)と呼ばれる新しい手法を提案する。
提案手法は, 再構成型復調ネットワークを利用して, 基礎となるクリーン信号の大半を復元する。
拡散アルゴリズムを用いて残留する高周波の詳細を生成し、視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-09-19T16:01:20Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
本稿では,学習画像圧縮(lic)の再構成品質を効果的に劣化させる攻撃手法を提案する。
我々は,Frobeniusノルムに基づく損失関数を導入して,元の画像と再構成された逆例との差を最大化することによって,逆例を生成する。
様々なlicモデルを用いてKodakデータセット上で実験を行った結果,有効性が確認された。
論文 参考訳(メタデータ) (2023-06-01T20:21:05Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
本稿では,GAR(Generative Adversa Renderer)について紹介する。
GARは、グラフィックルールに頼るのではなく、複雑な現実世界のイメージをモデル化することを学ぶ。
本手法は,複数顔再構成における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-06T04:16:06Z) - Towards High Fidelity Monocular Face Reconstruction with Rich
Reflectance using Self-supervised Learning and Ray Tracing [49.759478460828504]
ディープニューラルネットワークエンコーダと異なるレンダリングを組み合わせた手法が、幾何学、照明、反射の非常に高速な単分子再構成の道を開いた。
古典的な最適化ベースのフレームワーク内での単眼顔再構築のためにレイトレースが導入されました。
一般シーンにおける復元品質と堅牢性を大幅に向上させる新しい手法を提案します。
論文 参考訳(メタデータ) (2021-03-29T08:58:10Z) - A Deep Ordinal Distortion Estimation Approach for Distortion Rectification [62.72089758481803]
より高精度なパラメータを効率良く得る新しい歪み補正手法を提案する。
本研究では, 局所言語関連推定ネットワークを設計し, 順序歪みを学習し, 現実的な歪み分布を近似する。
歪み情報の冗長性を考慮すると,本手法では歪み画像の一部のみを用いて順序方向の歪み推定を行う。
論文 参考訳(メタデータ) (2020-07-21T10:03:42Z) - Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement [78.58603635621591]
画像空間における未ペアの合成-現実翻訳ネットワークの訓練は、厳しい制約下にある。
画像の非交叉シェーディング層とアルベド層に作用する半教師付きアプローチを提案する。
私たちの2段階のパイプラインはまず、物理ベースのレンダリングをターゲットとして、教師付き方法で正確なシェーディングを予測することを学習します。
論文 参考訳(メタデータ) (2020-03-27T21:45:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。