Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection
- URL: http://arxiv.org/abs/2410.02647v1
- Date: Thu, 3 Oct 2024 16:33:35 GMT
- Title: Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection
- Authors: Song Li, Yang Tan, Song Ke, Liang Hong, Bingxin Zhou,
- Abstract summary: ProVaccine is a novel deep learning solution that integrates latent vector representations of protein sequences and structures.
We also compile the most comprehensive immunogenicity dataset to date, encompassing over 9,500 antigen sequences, structures, and immunogenicity labels from bacteria, viruses, and tumors.
Our work provides an effective tool for vaccine design and sets valuable benchmarks for future research.
- Score: 6.949493332885247
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Immunogenicity prediction is a central topic in reverse vaccinology for finding candidate vaccines that can trigger protective immune responses. Existing approaches typically rely on highly compressed features and simple model architectures, leading to limited prediction accuracy and poor generalizability. To address these challenges, we introduce ProVaccine, a novel deep learning solution with a dual attention mechanism that integrates pre-trained latent vector representations of protein sequences and structures. We also compile the most comprehensive immunogenicity dataset to date, encompassing over 9,500 antigen sequences, structures, and immunogenicity labels from bacteria, viruses, and tumors. Extensive experiments demonstrate that ProVaccine outperforms existing methods across a wide range of evaluation metrics. Furthermore, we establish a post-hoc validation protocol to assess the practical significance of deep learning models in tackling vaccine design challenges. Our work provides an effective tool for vaccine design and sets valuable benchmarks for future research.
Related papers
- Opponent Shaping for Antibody Development [49.26728828005039]
Anti-viral therapies are typically designed to target only the current strains of a virus.
therapy-induced selective pressures act on viruses to drive the emergence of mutated strains, against which initial therapies have reduced efficacy.
We build on a computational model of binding between antibodies and viral antigens to implement a genetic simulation of viral evolutionary escape.
arXiv Detail & Related papers (2024-09-16T14:56:27Z) - Graph Adversarial Immunization for Certifiable Robustness [63.58739705845775]
Graph neural networks (GNNs) are vulnerable to adversarial attacks.
Existing defenses focus on developing adversarial training or model modification.
We propose and formulate graph adversarial immunization, i.e., vaccinating part of graph structure.
arXiv Detail & Related papers (2023-02-16T03:18:43Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
This paper presents a classification model for detecting COVID-19 vaccination related search queries.
We propose a novel approach of considering dense features as memory tokens that the model can attend to.
We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task.
arXiv Detail & Related papers (2022-12-16T13:57:41Z) - Improved proteasomal cleavage prediction with positive-unlabeled
learning [0.9023847175654603]
We present a new predictor trained with an expanded dataset and the solid theoretical spectrometry of positive-unlabeled learning.
The improved predictive capabilities will in turn enable more precise vaccine development.
arXiv Detail & Related papers (2022-09-14T11:29:15Z) - Constrained Submodular Optimization for Vaccine Design [1.7622426179653559]
Genetic variability makes it difficult to design peptide vaccines that provide widespread immunity in vaccinated populations.
We introduce a framework for evaluating and designing peptide vaccines that uses probabilistic machine learning models.
We demonstrate its ability to produce designs for a SARS-CoV-2 vaccine that outperform previous designs.
arXiv Detail & Related papers (2022-06-16T17:40:54Z) - A feasibility study proposal of the predictive model to enable the
prediction of population susceptibility to COVID-19 by analysis of vaccine
utilization for advising deployment of a booster dose [0.0]
SARS-CoV-2 strain of B1.1.529 or Omicron spreading around the globe.
Concerns that it will not end soon and that it will be a race against time until a more contagious and virulent variant emerges.
One of the most promising approaches for preventing virus propagation is to maintain continuous high vaccination efficacy.
arXiv Detail & Related papers (2022-04-25T16:05:59Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - Modeling the effect of the vaccination campaign on the Covid-19 pandemic [0.0]
We introduce SAIVR, a mathematical model able to forecast the Covid-19 epidemic evolution during the vaccination campaign.
The model contains several parameters and initial conditions that are estimated by employing a semi-supervised machine learning procedure.
Instructed by these results, we performed an extensive study on the temporal evolution of the pandemic under varying values of roll-out daily rates, vaccine efficacy, and a broad range of societal vaccine hesitancy/denial levels.
arXiv Detail & Related papers (2021-08-27T19:12:13Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance.
We also show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USA's Centers for Disease Control and Prevention (CDC)
arXiv Detail & Related papers (2021-08-07T15:08:15Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.