論文の概要: Adversarial Virtual Exemplar Learning for Label-Frugal Satellite Image
Change Detection
- arxiv url: http://arxiv.org/abs/2212.13974v1
- Date: Wed, 28 Dec 2022 17:46:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 15:35:59.850653
- Title: Adversarial Virtual Exemplar Learning for Label-Frugal Satellite Image
Change Detection
- Title(参考訳): ラベルフルーガー衛星画像変化検出のための対角的仮想体験学習
- Authors: Hichem Sahbi and Sebastien Deschamps
- Abstract要約: 本稿では,能動学習を用いた衛星画像変化検出について検討する。
本手法は対話的であり,最も情報に富むディスプレイについて,神託者(ユーザ)に質問する質問・回答モデルに依存している。
本手法の主な貢献は,最も代表的で多様で不確実な仮想観念しか持たない,神託を軽率に探究できる,新しい敵対モデルである。
- 参考スコア(独自算出の注目度): 12.18340575383456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Satellite image change detection aims at finding occurrences of targeted
changes in a given scene taken at different instants. This task is highly
challenging due to the acquisition conditions and also to the subjectivity of
changes. In this paper, we investigate satellite image change detection using
active learning. Our method is interactive and relies on a question and answer
model which asks the oracle (user) questions about the most informative display
(dubbed as virtual exemplars), and according to the user's responses, updates
change detections. The main contribution of our method consists in a novel
adversarial model that allows frugally probing the oracle with only the most
representative, diverse and uncertain virtual exemplars. The latter are learned
to challenge the most the trained change decision criteria which ultimately
leads to a better re-estimate of these criteria in the following iterations of
active learning. Conducted experiments show the out-performance of our proposed
adversarial display model against other display strategies as well as the
related work.
- Abstract(参考訳): 衛星画像変化検出は、異なる瞬間に撮影された特定のシーンにおける目標変化の検出を目的としている。
この課題は、獲得条件と変化の主観性のため、非常に困難である。
本稿では,能動学習を用いた衛星画像変化検出について検討する。
本手法は対話型であり,もっとも有意義なディスプレイ(仮想的な例)について oracle (ユーザ) の質問を問う質問と回答モデルに依存し,ユーザの回答に従って変更検出を更新できる。
本手法の主な貢献は,最も代表的で多様で不確実な仮想観念しか持たない,神託を軽率に探究できる,新たな敵対モデルである。
後者は、最も訓練された変更決定基準に挑戦するために学習され、最終的には、次のアクティブラーニングのイテレーションでこれらの基準をより良く再見積する。
実演実験では,他の表示戦略と関連する作業に対して,提案した対向ディスプレイモデルの有効性が示された。
関連論文リスト
- Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
我々は,CDQAG (Change Detection Question Answering and Grounding) という新しいタスクを導入する。
CDQAGは、解釈可能なテキスト回答と直感的な視覚的証拠を提供することで、従来の変更検出タスクを拡張している。
そこで本研究では,質問応答とグラウンド化のタスクを統一する,シンプルで効果的なベースライン手法であるVisTAを提案する。
論文 参考訳(メタデータ) (2024-10-31T11:20:13Z) - Reinforcement-based Display-size Selection for Frugal Satellite Image
Change Detection [5.656581242851759]
能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案手法は反復的であり,最も重要な画像のラベルについてユーザ(オーラル)を軽率に探索する。
論文 参考訳(メタデータ) (2023-12-28T11:14:43Z) - Frugal Satellite Image Change Detection with Deep-Net Inversion [5.656581242851759]
能動学習に基づく変化検出のための新しいアルゴリズムを考案する。
提案手法は,変化の関連性についてオラクル(ユーザ)を探索する質問・回答モデルに基づく。
主な貢献は、最も代表的で多様で不確実な仮想外見を学ぶことができる、新しい敵モデルにある。
論文 参考訳(メタデータ) (2023-09-26T09:25:53Z) - Learning Transferable Adversarial Robust Representations via Multi-view
Consistency [57.73073964318167]
デュアルエンコーダを用いたメタ逆多視点表現学習フレームワークを提案する。
未確認領域からの少数ショット学習タスクにおけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-10-19T11:48:01Z) - Reinforcement-based frugal learning for satellite image change detection [12.18340575383456]
能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案されたアプローチは反復的であり、ターゲットとする変更についてユーザ(オーラル)に質問する。
本稿では,各未ラベルサンプルに関連度尺度を割り当てる確率的フレームワークについて検討する。
論文 参考訳(メタデータ) (2022-03-22T09:37:24Z) - Frugal Learning of Virtual Exemplars for Label-Efficient Satellite Image
Change Detection [12.18340575383456]
本稿では,能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案するフレームワークは反復的であり、最も情報に富むディスプレイについてオラクル(ユーザ)に質問する質問と回答モデルに依存している。
我々のフレームワークの貢献は、最も代表的で多様な仮想見本を選択できる新しい表示モデルに存在する。
論文 参考訳(メタデータ) (2022-03-22T09:29:42Z) - Active learning for interactive satellite image change detection [12.907324263748817]
本稿では,衛星画像変化検出のための新しい能動学習アルゴリズムを提案する。
提案手法は対話的で,質問と回答のモデルに基づいて,サンプル衛星画像対の関連性についてオラクルに質問する。
自然災害後の衛星画像変化検出作業(竜巻)に関する実験は,提案手法の関連性を示すものである。
論文 参考訳(メタデータ) (2021-10-08T16:59:12Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
逆関数仕様は、深い強化学習を通しての学習行動にとって大きな障害であり続けている。
望ましい行動の視覚的なデモンストレーションは、エージェントを教えるためのより簡単で自然な方法を示すことが多い。
変動モデルに基づく対向的模倣学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-16T00:15:18Z) - Seeing Differently, Acting Similarly: Imitation Learning with
Heterogeneous Observations [126.78199124026398]
多くの実世界の模倣学習タスクでは、デモレーターと学習者は異なるが完全な観察空間で行動しなければならない。
本研究では、上記の学習問題を異種観察学習(HOIL)としてモデル化する。
本稿では,重要度重み付け,拒否学習,アクティブクエリに基づくIWREアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-17T05:44:04Z) - Exploring Visual Engagement Signals for Representation Learning [56.962033268934015]
VisEは、クラスタ化されたエンゲージメント信号から派生した擬似ラベルにソーシャルイメージをマップする弱い教師付き学習アプローチである。
この方法でトレーニングされたモデルが、感情認識や政治的バイアス検出といった主観的なコンピュータビジョンタスクにどのように役立つかを研究する。
論文 参考訳(メタデータ) (2021-04-15T20:50:40Z) - Self-Supervised Representation Learning from Flow Equivariance [97.13056332559526]
本稿では,複雑なシーンの映像ストリームに直接展開可能な,自己教師型学習表現フレームワークを提案する。
高分解能rawビデオから学んだ我々の表現は、静的画像の下流タスクに簡単に使用できます。
論文 参考訳(メタデータ) (2021-01-16T23:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。