論文の概要: Reinforcement-based Display-size Selection for Frugal Satellite Image
Change Detection
- arxiv url: http://arxiv.org/abs/2312.16965v1
- Date: Thu, 28 Dec 2023 11:14:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 16:29:45.195891
- Title: Reinforcement-based Display-size Selection for Frugal Satellite Image
Change Detection
- Title(参考訳): Frugal Satellite Image Change Detectionのための強化型ディスプレイサイズ選択
- Authors: Hichem Sahbi
- Abstract要約: 能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案手法は反復的であり,最も重要な画像のラベルについてユーザ(オーラル)を軽率に探索する。
- 参考スコア(独自算出の注目度): 5.656581242851759
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel interactive satellite image change detection algorithm
based on active learning. The proposed method is iterative and consists in
frugally probing the user (oracle) about the labels of the most critical
images, and according to the oracle's annotations, it updates change detection
results. First, we consider a probabilistic framework which assigns to each
unlabeled sample a relevance measure modeling how critical is that sample when
training change detection functions. We obtain these relevance measures by
minimizing an objective function mixing diversity, representativity and
uncertainty. These criteria when combined allow exploring different data modes
and also refining change detections. Then, we further explore the potential of
this objective function, by considering a reinforcement learning approach that
finds the best combination of diversity, representativity and uncertainty as
well as display-sizes through active learning iterations, leading to better
generalization as shown through experiments in interactive satellite image
change detection.
- Abstract(参考訳): 本稿では,アクティブラーニングに基づくインタラクティブ衛星画像変化検出アルゴリズムを提案する。
提案手法は反復的であり、もっとも重要な画像のラベルについてユーザー(oracle)をゆるやかに調査し、oracleのアノテーションによると、変更検出結果を更新する。
まず、各未ラベルサンプルに対して、変更検出関数のトレーニングにおいて、そのサンプルがどの程度重要かをモデル化する関連度尺度を割り当てる確率的フレームワークを検討する。
多様性,表現性,不確実性を混合した目的関数を最小化することにより,これらの関連性対策を得る。
これらの基準を組み合わせることで、異なるデータモードの探索と変更検出の精査が可能になる。
次に,この目的関数の可能性について,インタラクティブ衛星画像変化検出実験を通じて示すように,多様性,表現性,不確実性,表示サイズを最良組み合わせた強化学習手法を考察し,さらにその可能性について考察する。
関連論文リスト
- An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
ゼロショットの人間の骨格に基づく行動認識は、トレーニング中に見られるカテゴリ外の行動を認識するモデルを構築することを目的としている。
従来の研究では、シーケンスの視覚的空間分布と意味的空間分布の整合性に焦点が当てられていた。
強固で頑健な表現を得るために,新たな損失関数サンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:53:01Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
自己相似性駆動型スケール不変学習(SSL)という新しいワンステップフレームワークを提案する。
本稿では,ネットワークを前景と学習スケール不変の機能に集中させるための,マルチスケール・エクステンプラー・ブランチを提案する。
PRWおよびCUHK-SYSUデータベースの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-25T04:48:11Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
不確実性推定は、ロボット工学や自律運転といった重要な問題にとって重要なタスクである。
本稿では,3次元物体追跡のためのVoxel Pseudo Image Tracking (VPIT) の変分ニューラルネットワークによるバージョンを提案する。
論文 参考訳(メタデータ) (2023-02-12T13:34:50Z) - Adversarial Virtual Exemplar Learning for Label-Frugal Satellite Image
Change Detection [12.18340575383456]
本稿では,能動学習を用いた衛星画像変化検出について検討する。
本手法は対話的であり,最も情報に富むディスプレイについて,神託者(ユーザ)に質問する質問・回答モデルに依存している。
本手法の主な貢献は,最も代表的で多様で不確実な仮想観念しか持たない,神託を軽率に探究できる,新しい敵対モデルである。
論文 参考訳(メタデータ) (2022-12-28T17:46:20Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Reinforcement-based frugal learning for satellite image change detection [12.18340575383456]
能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案されたアプローチは反復的であり、ターゲットとする変更についてユーザ(オーラル)に質問する。
本稿では,各未ラベルサンプルに関連度尺度を割り当てる確率的フレームワークについて検討する。
論文 参考訳(メタデータ) (2022-03-22T09:37:24Z) - Frugal Learning of Virtual Exemplars for Label-Efficient Satellite Image
Change Detection [12.18340575383456]
本稿では,能動学習に基づく対話型衛星画像変化検出アルゴリズムを提案する。
提案するフレームワークは反復的であり、最も情報に富むディスプレイについてオラクル(ユーザ)に質問する質問と回答モデルに依存している。
我々のフレームワークの貢献は、最も代表的で多様な仮想見本を選択できる新しい表示モデルに存在する。
論文 参考訳(メタデータ) (2022-03-22T09:29:42Z) - Reliable Shot Identification for Complex Event Detection via
Visual-Semantic Embedding [72.9370352430965]
本稿では,映像中の事象検出のための視覚的意味的誘導損失法を提案する。
カリキュラム学習に動機付け,高い信頼性の事例で分類器の訓練を開始するために,負の弾性正規化項を導入する。
提案する非ネット正規化問題の解法として,代替最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-12T11:46:56Z) - Active learning for interactive satellite image change detection [12.907324263748817]
本稿では,衛星画像変化検出のための新しい能動学習アルゴリズムを提案する。
提案手法は対話的で,質問と回答のモデルに基づいて,サンプル衛星画像対の関連性についてオラクルに質問する。
自然災害後の衛星画像変化検出作業(竜巻)に関する実験は,提案手法の関連性を示すものである。
論文 参考訳(メタデータ) (2021-10-08T16:59:12Z) - Multi-view Contrastive Coding of Remote Sensing Images at Pixel-level [5.64497799927668]
この制限を克服するために、ラベルのないマルチビュー設定に基づく画素単位のコントラスト的アプローチを提案する。
擬似媒介ResUnetは、シフトした正のペアから特徴を整列することを目的とした表現を学ぶために訓練される。
その結果,最先端のマルチビューコントラスト法よりも効率と精度が向上した。
論文 参考訳(メタデータ) (2021-05-18T13:28:46Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
本稿では,適応オブジェクト検出のための新しいエンド・ツー・エンドの非教師付き深部ドメイン適応モデルを提案する。
モデルはマルチラベル予測を利用して、各画像内の対象カテゴリ情報を明らかにする。
本稿では,オブジェクト検出を支援するための予測整合正則化機構を提案する。
論文 参考訳(メタデータ) (2020-03-29T04:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。