論文の概要: Detection, Explanation and Filtering of Cyber Attacks Combining Symbolic
and Sub-Symbolic Methods
- arxiv url: http://arxiv.org/abs/2212.13991v1
- Date: Fri, 23 Dec 2022 09:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 14:06:23.357877
- Title: Detection, Explanation and Filtering of Cyber Attacks Combining Symbolic
and Sub-Symbolic Methods
- Title(参考訳): シンボリックとサブシンボリックを組み合わせたサイバー攻撃の検出, 説明, フィルタリング
- Authors: Anna Himmelhuber, Dominik Dold, Stephan Grimm, Sonja Zillner, Thomas
Runkler
- Abstract要約: 我々は、ドメイン知識を取り入れたサイバーセキュリティの分野で、象徴的およびサブシンボル的手法の組み合わせを検討している。
提案手法は,様々なシナリオに対するアラートの直感的な説明を生成する。
説明はアラートに関する深い洞察を提供するだけでなく、偽陽性の警告を66%、忠実度メトリックを含めると93%減少させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) on graph-structured data has recently received deepened
interest in the context of intrusion detection in the cybersecurity domain. Due
to the increasing amounts of data generated by monitoring tools as well as more
and more sophisticated attacks, these ML methods are gaining traction.
Knowledge graphs and their corresponding learning techniques such as Graph
Neural Networks (GNNs) with their ability to seamlessly integrate data from
multiple domains using human-understandable vocabularies, are finding
application in the cybersecurity domain. However, similar to other
connectionist models, GNNs are lacking transparency in their decision making.
This is especially important as there tend to be a high number of false
positive alerts in the cybersecurity domain, such that triage needs to be done
by domain experts, requiring a lot of man power. Therefore, we are addressing
Explainable AI (XAI) for GNNs to enhance trust management by exploring
combining symbolic and sub-symbolic methods in the area of cybersecurity that
incorporate domain knowledge. We experimented with this approach by generating
explanations in an industrial demonstrator system. The proposed method is shown
to produce intuitive explanations for alerts for a diverse range of scenarios.
Not only do the explanations provide deeper insights into the alerts, but they
also lead to a reduction of false positive alerts by 66% and by 93% when
including the fidelity metric.
- Abstract(参考訳): グラフ構造化データの機械学習(ml)は最近、サイバーセキュリティ領域における侵入検出のコンテキストに対する関心が深まっている。
監視ツールによって生成されるデータの量の増加と、より高度な攻撃により、これらのMLメソッドは勢いを増している。
知識グラフとその対応する学習技術であるグラフニューラルネットワーク(GNN)は、人間の理解可能な語彙を使って複数のドメインからデータをシームレスに統合する能力を持ち、サイバーセキュリティドメインに応用されている。
しかし、他のコネクショナリストモデルと同様に、GNNは意思決定において透明性を欠いている。
これは特に重要であり、サイバーセキュリティドメインには多くの偽陽性のアラートがあり、ドメインの専門家がトリアージを行う必要があり、多くの人的権限を必要とする。
そこで,我々は,ドメイン知識を取り入れたサイバーセキュリティ分野において,シンボル的およびサブシンボル的手法を組み合わせることで,信頼管理を強化するために,GNNのための説明可能なAI(XAI)に取り組んでいる。
産業デモシステムでの説明を生成することによって,このアプローチを実験した。
提案手法は,様々なシナリオに対するアラートに対する直感的な説明を生成する。
説明はアラートに関する深い洞察を提供するだけでなく、偽陽性の警告を66%、忠実度メトリックを含めると93%減少させる。
関連論文リスト
- Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
バックドアは、ディープニューラルネットワーク(DNN)上の悪意あるアクターと、データ処理のためのクラウドサービスによって悪用される。
提案手法は高度テンソル分解アルゴリズムを利用して,事前学習したDNNの重みを慎重に解析し,バックドアモデルとクリーンモデルとの区別を行う。
この進歩は、ネットワークシステムにおけるディープラーニングとAIのセキュリティを強化し、新興技術の脅威の進化に対して不可欠なサイバーセキュリティを提供する。
論文 参考訳(メタデータ) (2024-03-13T03:10:11Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
本稿では,事前訓練したDNNの重みから特徴を抽出するバックドア検出手法を提案する。
他の検出技術と比較して、これはトレーニングデータを必要としないなど、多くのメリットがある。
提案手法は, 競合するアルゴリズムよりも効率性が高く, より正確であり, 深層学習とAIの安全な適用を確実にするのに役立つ。
論文 参考訳(メタデータ) (2022-12-15T20:20:18Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Machine learning on knowledge graphs for context-aware security
monitoring [0.0]
本稿では,侵入検知のための知識グラフへの機械学習の適用について論じる。
産業システムにおける異常な活動を評価するためのリンク予測手法を実験的に評価した。
提案手法は,様々なシナリオにおいて,直感的によく校正され,解釈可能なアラートを生成する。
論文 参考訳(メタデータ) (2021-05-18T18:00:19Z) - Explaining Network Intrusion Detection System Using Explainable AI
Framework [0.5076419064097734]
侵入検知システムは、今日の世界のサイバー安全の重要なレイヤーの1つです。
本稿では,ディープニューラルネットワークを用いてネットワーク侵入検出を行った。
また、機械学習パイプラインの各段階で透明性を追加する説明可能なAIフレームワークも提案しました。
論文 参考訳(メタデータ) (2021-03-12T07:15:09Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Stealing Links from Graph Neural Networks [72.85344230133248]
最近、ニューラルネットワークはグラフニューラルネットワーク(GNN)として知られるグラフデータに拡張された。
優れたパフォーマンスのため、GNNは医療分析、レコメンダシステム、不正検出など多くのアプリケーションを持っている。
グラフ上でトレーニングされたGNNモデルの出力からグラフを盗む最初の攻撃を提案する。
論文 参考訳(メタデータ) (2020-05-05T13:22:35Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
敵攻撃は入力に対する小さな摂動によって容易に騙される。
グラフニューラルネットワーク(GNN)がこの脆弱性を継承することを実証している。
本調査では,既存の攻撃と防御を分類し,対応する最先端の手法を概観する。
論文 参考訳(メタデータ) (2020-03-02T04:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。