論文の概要: Robustifying Markowitz
- arxiv url: http://arxiv.org/abs/2212.13996v1
- Date: Wed, 28 Dec 2022 18:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 16:29:15.473062
- Title: Robustifying Markowitz
- Title(参考訳): ロバスト化マルコウィッツ
- Authors: Wolfgang Karl H\"ardle and Yegor Klochkov and Alla Petukhina and
Nikita Zhivotovskiy
- Abstract要約: 金融時系列のヘビーテール特性は、実際にはこれらの重みの不安定な変動の原因である。
我々は,世界最小のMarkowitzポートフォリオのコストと重みを安定化するためのツールボックスを提案する。
我々は、ロバスト化されたポートフォリオが縮小ベースのポートフォリオや制約されたポートフォリオよりも低いターンオーバーに達することを実証した。
- 参考スコア(独自算出の注目度): 3.154269505086154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Markowitz mean-variance portfolios with sample mean and covariance as input
parameters feature numerous issues in practice. They perform poorly out of
sample due to estimation error, they experience extreme weights together with
high sensitivity to change in input parameters. The heavy-tail characteristics
of financial time series are in fact the cause for these erratic fluctuations
of weights that consequently create substantial transaction costs. In
robustifying the weights we present a toolbox for stabilizing costs and weights
for global minimum Markowitz portfolios. Utilizing a projected gradient descent
(PGD) technique, we avoid the estimation and inversion of the covariance
operator as a whole and concentrate on robust estimation of the gradient
descent increment. Using modern tools of robust statistics we construct a
computationally efficient estimator with almost Gaussian properties based on
median-of-means uniformly over weights. This robustified Markowitz approach is
confirmed by empirical studies on equity markets. We demonstrate that
robustified portfolios reach the lowest turnover compared to shrinkage-based
and constrained portfolios while preserving or slightly improving out-of-sample
performance.
- Abstract(参考訳): マーコウィッツ平均分散ポートフォリオは、サンプル平均と共分散を入力パラメータとして持つ。
推定誤差のため、サンプル外では性能が悪く、入力パラメータの変更に対する感度も高く、極端な重みを経験する。
金融時系列のヘビーテールの特徴は、結果として相当な取引コストを生み出す重みの不安定な変動の原因である。
重み付けの堅牢化では,グローバル最小のmarkowitzポートフォリオのコストと重み付けを安定化するためのツールボックスを提案する。
予測勾配降下(PGD)手法を用いることで、共分散演算子の全体の推定と逆転を回避し、勾配降下増加のロバストな推定に集中する。
ロバスト統計の現代的なツールを使用して、重みの中央値に基づくほぼガウス的性質を持つ計算効率の良い推定器を構築する。
この強固なマルコウィッツのアプローチは、株式市場に関する実証的研究によって確認される。
我々は、ロバスト化されたポートフォリオが縮小ベースや制約付きポートフォリオと比べて最も低いターンオーバに達することを実証し、サンプル外のパフォーマンスを保ち、またはわずかに改善する。
関連論文リスト
- Quantifying Prediction Consistency Under Model Multiplicity in Tabular LLMs [10.494477811252034]
微調整された大きな言語モデルは、同じ入力で矛盾する予測を行うような、テクティファインチューニングの多重性につながる可能性がある。
これにより、Tabular LLMの堅牢性と信頼性に関する重要な懸念が持ち上がる。
本研究は,コストのかかるモデル再訓練を伴わずに個々の予測の堅牢性を定量化する新しい指標を提案する。
論文 参考訳(メタデータ) (2024-07-04T22:22:09Z) - Portfolio Optimization with Robust Covariance and Conditional Value-at-Risk Constraints [0.0]
各種のLedoit Shrinkage CovarianceおよびRobust Gerber CovarianceMatrixを用いた大容量ポートフォリオの性能評価を行った。
堅牢性評価は、特に強気相場で、市場資本化の重み付けされたベンチマークポートフォリオを上回る可能性がある。
我々は最適化アルゴリズムに教師なしクラスタリングアルゴリズムK平均を組み込んだ。
論文 参考訳(メタデータ) (2024-06-02T03:50:20Z) - Nearest Neighbor Sampling for Covariate Shift Adaptation [7.940293148084844]
重みを推定しない新しい共変量シフト適応法を提案する。
基本的な考え方は、ソースデータセットの$k$-nearestの隣人によってラベル付けされたラベル付けされていないターゲットデータを直接扱うことだ。
実験の結果, 走行時間を大幅に短縮できることがわかった。
論文 参考訳(メタデータ) (2023-12-15T17:28:09Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - U-Statistics for Importance-Weighted Variational Inference [29.750633016889655]
重要重み付き変分推論における推定のばらつきを低減するために,U-statisticsを用いた手法を提案する。
実験により,U-Statistic variance reduction(U-Statistic variance)の低減は,モデルの範囲での推論性能の大幅な改善につながることが確認された。
論文 参考訳(メタデータ) (2023-02-27T16:08:43Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
強靭性と精度のトレードオフは、敵文学において広く研究されている。
局所的不変性の帰納的バイアスを課す不適切に定義された頑健な誤差に由来する可能性がある。
定義上、SCOREは、最悪のケースの不確実性に対処しながら、堅牢性と正確性の間の和解を促進する。
論文 参考訳(メタデータ) (2022-02-21T10:36:09Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
本稿では,マルコフ決定過程における最適な$Q$値関数を離散状態と動作で推定する問題を解析する。
局所的なミニマックスフレームワークを用いて、この関数は任意の推定手順の精度の低い境界に現れることを示す。
他方,Q$ラーニングの分散還元版を解析することにより,状態と行動空間の対数的要因まで,下位境界のシャープさを確立する。
論文 参考訳(メタデータ) (2021-06-28T00:38:54Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。