論文の概要: Heavy-tailed Streaming Statistical Estimation
- arxiv url: http://arxiv.org/abs/2108.11483v1
- Date: Wed, 25 Aug 2021 21:30:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-27 14:09:37.993769
- Title: Heavy-tailed Streaming Statistical Estimation
- Title(参考訳): 重み付きストリーミング統計推定
- Authors: Che-Ping Tsai, Adarsh Prasad, Sivaraman Balakrishnan, Pradeep
Ravikumar
- Abstract要約: ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
- 参考スコア(独自算出の注目度): 58.70341336199497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of heavy-tailed statistical estimation given streaming
$p$-dimensional samples. This could also be viewed as stochastic optimization
under heavy-tailed distributions, with an additional $O(p)$ space complexity
constraint. We design a clipped stochastic gradient descent algorithm and
provide an improved analysis, under a more nuanced condition on the noise of
the stochastic gradients, which we show is critical when analyzing stochastic
optimization problems arising from general statistical estimation problems. Our
results guarantee convergence not just in expectation but with exponential
concentration, and moreover does so using $O(1)$ batch size. We provide
consequences of our results for mean estimation and linear regression. Finally,
we provide empirical corroboration of our results and algorithms via synthetic
experiments for mean estimation and linear regression.
- Abstract(参考訳): p$-dimensional サンプルをストリーミングする場合,重み付き統計量推定の課題を考える。
これは、さらに$o(p)$の空間複雑性制約を伴う重畳分布の下での確率的最適化と見なすこともできる。
本研究では, 確率勾配の雑音に対してよりニュアンスな条件下で, 確率勾配降下アルゴリズムを設計し, 一般的な統計的推定問題から生じる確率勾配最適化問題を解析する場合に重要であることを示す。
結果は期待値だけでなく指数関数集中度で収束し,さらに$o(1)$バッチサイズで収束する。
平均回帰および線形回帰に対する結果の結果を提供する。
最後に, 平均推定と線形回帰のための合成実験により, 実験結果とアルゴリズムの実証的照合を行う。
関連論文リスト
- Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
構造密度の重み付き雑音によるクリップ最適化問題を考察する。
勾配が有限の順序モーメントを持つとき、$mathcalO(K-(alpha - 1)/alpha)$よりも高速な収束率が得られることを示す。
得られた推定値が無視可能なバイアスと制御可能な分散を持つことを示す。
論文 参考訳(メタデータ) (2023-11-07T17:39:17Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
勾配アルゴリズムは線形系を解くのに有効な方法である。
最適値に収束しない場合であっても,勾配降下は正確な予測を導出することを示す。
実験的に、勾配降下は十分に大規模または不条件の回帰タスクにおいて最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-06-20T15:07:37Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z) - A Nonconvex Framework for Structured Dynamic Covariance Recovery [24.471814126358556]
時間変化のある2次統計量を持つ高次元データに対するフレキシブルで解釈可能なモデルを提案する。
文献によって動機付けられ,因子化とスムーズな時間データの定量化を行う。
私たちのアプローチは,既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-11-11T07:09:44Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
勾配推定は統計学と学習理論において重要である。
ここでは古典的な回帰設定を考えると、実値の正方形可積分 r.v.$Y$ が予測される。
代替推定法で得られた値に対して, 漸近的境界が改良されることを証明した。
論文 参考訳(メタデータ) (2020-06-26T15:19:43Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - An Optimal Statistical and Computational Framework for Generalized
Tensor Estimation [10.899518267165666]
本稿では,低ランクテンソル推定問題に対するフレキシブルなフレームワークについて述べる。
計算画像、ゲノミクス、ネットワーク解析の応用から多くの重要な例を含む。
論文 参考訳(メタデータ) (2020-02-26T01:54:35Z) - Maximum likelihood estimation and uncertainty quantification for
Gaussian process approximation of deterministic functions [10.319367855067476]
本稿は、ガウス過程の回帰の文脈において、ノイズのないデータセットを用いた最初の理論的分析の1つを提供する。
本稿では,スケールパラメータのみの最大推定がガウス過程モデルの不特定に対する顕著な適応をもたらすことを示す。
論文 参考訳(メタデータ) (2020-01-29T17:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。