Triviality of quantum trajectories close to a directed percolation
transition
- URL: http://arxiv.org/abs/2212.14026v2
- Date: Sat, 3 Jun 2023 14:23:58 GMT
- Title: Triviality of quantum trajectories close to a directed percolation
transition
- Authors: Lorenzo Piroli, Yaodong Li, Romain Vasseur, Adam Nahum
- Abstract summary: We study quantum circuits consisting of unitary gates, projective measurements, and control operations that steer the system towards a pure absorbing state.
Two types of phase transition occur as the rate of these control operations is increased: a measurement-induced entanglement transition, and a directed percolation transition into the absorbing state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study quantum circuits consisting of unitary gates, projective
measurements, and control operations that steer the system towards a pure
absorbing state. Two types of phase transition occur as the rate of these
control operations is increased: a measurement-induced entanglement transition,
and a directed percolation transition into the absorbing state (taken here to
be a product state). In this work we show analytically that these transitions
are generically distinct, with the quantum trajectories becoming disentangled
before the absorbing state transition is reached, and we analyze their critical
properties. We introduce a simple class of models where the measurements in
each quantum trajectory define an Effective Tensor Network (ETN) -- a subgraph
of the initial spacetime graph where nontrivial time evolution takes place. By
analyzing the entanglement properties of the ETN, we show that the entanglement
and absorbing-state transitions coincide only in the limit of infinite local
Hilbert-space dimension. Focusing on a Clifford model which allows numerical
simulations for large system sizes, we verify our predictions and study the
finite-size crossover between the two transitions at large local Hilbert space
dimension. We give evidence that the entanglement transition is governed by the
same fixed point as in hybrid circuits without feedback.
Related papers
- Concomitant Entanglement and Control Criticality Driven by Collective Measurements [0.0]
We study Adaptive quantum circuits where a quantum many-body state is controlled using measurements and conditional unitary operations.
We find two types of nonequilibrium quantum phase transitions: measurement-induced transitions between volume- and area-law-entangled steady states and control-induced transitions where the system falls into an absorbing state.
We attribute this feature and the apparent coincidence of the control and entanglement transitions to the global nature of the control.
arXiv Detail & Related papers (2024-09-10T18:00:03Z) - Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Free fermions under adaptive quantum dynamics [7.307017324268605]
We study free fermion systems under adaptive quantum dynamics consisting of unitary gates and projective measurements.
We find that the corrective unitary operations can steer the system into a state characterized by charge-density-wave order.
arXiv Detail & Related papers (2023-06-28T23:09:59Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Shared purity and concurrence of a mixture of ground and low-lying
excited states as indicators of quantum phase transitions [0.0]
We show that shared purity is as effective as concurrence in indicating quantum phase transitions.
We find diverging exponents for the order parameters near the transitions in odd- and even-sized systems.
It is plausible that the divergence is related to a M"obius strip-like boundary condition required for odd-sized systems.
arXiv Detail & Related papers (2022-02-07T16:38:07Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.