論文の概要: Leveraging World Knowledge in Implicit Hate Speech Detection
- arxiv url: http://arxiv.org/abs/2212.14100v1
- Date: Wed, 28 Dec 2022 21:23:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 16:22:43.768971
- Title: Leveraging World Knowledge in Implicit Hate Speech Detection
- Title(参考訳): 重要ヘイト音声検出における世界知識の活用
- Authors: Jessica Lin
- Abstract要約: テキスト中のエンティティの言及に関する現実的な知識は、モデルがヘイトスピーチをよりよく検出するのに役立ちます。
また,実世界の知識がヘイトスピーチ検出に価値を与えない事例についても論じる。
- 参考スコア(独自算出の注目度): 5.5536024561229205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While much attention has been paid to identifying explicit hate speech,
implicit hateful expressions that are disguised in coded or indirect language
are pervasive and remain a major challenge for existing hate speech detection
systems. This paper presents the first attempt to apply Entity Linking (EL)
techniques to both explicit and implicit hate speech detection, where we show
that such real world knowledge about entity mentions in a text does help models
better detect hate speech, and the benefit of adding it into the model is more
pronounced when explicit entity triggers (e.g., rally, KKK) are present. We
also discuss cases where real world knowledge does not add value to hate speech
detection, which provides more insights into understanding and modeling the
subtleties of hate speech.
- Abstract(参考訳): 明示的なヘイトスピーチの特定には多くの注意が払われているが、コード化された言語や間接的な言語に偽装された暗黙の憎悪表現は普及しており、既存のヘイトスピーチ検出システムにとって大きな課題である。
本稿では、明示的・暗黙的ヘイトスピーチ検出にエンティティリンク(el)技術を適用する最初の試みについて述べる。そこでは、テキスト中のエンティティ参照に関する現実世界の知識が、モデルがヘイトスピーチを検出するのに役立つことを示すとともに、明示的なエンティティトリガ(例えばrally、kkk)が存在する場合、モデルにそれを追加するメリットをより顕著に示す。
また、実世界の知識がヘイトスピーチ検出に価値を与えないケースについても論じ、ヘイトスピーチの微妙さを理解し、モデル化するための洞察を提供する。
関連論文リスト
- An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
既存の手法の大きな制限は、ヘイトスピーチ検出がコンテキストの問題である点である。
近年,大規模言語モデル (LLM) はいくつかの自然言語処理において最先端の性能を示した。
本研究は, ヘイトスピーチの文脈を効果的に把握する上で, 巧妙な推論プロンプトが有効であることを明らかにする。
論文 参考訳(メタデータ) (2024-01-07T00:39:33Z) - HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning [29.519687405350304]
本稿では,大規模言語モデル(LLM)の推論能力を利用して,ヘイトスピーチの説明のギャップを埋めるヘイトスピーチ検出フレームワークHAREを紹介する。
SBICとImplicit Hateベンチマークの実験では、モデル生成データを用いた手法がベースラインを一貫して上回ることを示した。
提案手法は,訓練されたモデルの説明品質を高め,未知のデータセットへの一般化を改善する。
論文 参考訳(メタデータ) (2023-11-01T06:09:54Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
本稿では,ヘイトスピーチ検出のための新しい双方向コントラスト学習フレームワークを提案する。
本フレームワークは,自己教師型学習と教師型学習の損失を協調的に最適化し,スパンレベルの情報を取得する。
公開可能な2つの英語データセットの実験を行い、実験結果から、提案モデルが最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T13:23:36Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Beyond Plain Toxic: Detection of Inappropriate Statements on Flammable
Topics for the Russian Language [76.58220021791955]
本稿では,不合理性という二項的概念と,センシティブなトピックの多項的概念に基づいてラベル付けされた2つのテキストコレクションについて述べる。
不適切な概念を客観するために、クラウドソーシングではデータ駆動方式で定義する。
論文 参考訳(メタデータ) (2022-03-04T15:59:06Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Textless Speech Emotion Conversion using Decomposed and Discrete
Representations [49.55101900501656]
我々は、音声を、コンテンツ単位、F0、話者、感情からなる離散的、非絡み合いの学習表現に分解する。
まず、内容単位を対象の感情に翻訳し、その単位に基づいて韻律的特徴を予測することによって、音声内容を変更する。
最後に、予測された表現をニューラルボコーダに入力して音声波形を生成する。
論文 参考訳(メタデータ) (2021-11-14T18:16:42Z) - Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model [0.5801044612920815]
本稿では,双方向LSTMに基づくディープモデルにドメイン固有の単語を埋め込み,ヘイトスピーチを自動的に検出・分類する可能性について検討する。
実験の結果、Bidirectional LSTMベースのディープモデルによるドメイン固有単語の埋め込みは93%のf1スコアを獲得し、BERTは96%のf1スコアを達成した。
論文 参考訳(メタデータ) (2021-11-02T11:42:54Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
この研究は、暗黙のヘイトスピーチの理論的に正当化された分類法と、各メッセージにきめ細かいラベルを付けたベンチマークコーパスを導入している。
本稿では、同時代のベースラインを用いて、暗黙のヘイトスピーチを検出し、説明するためにデータセットを体系的に分析する。
論文 参考訳(メタデータ) (2021-09-11T16:52:56Z) - Towards generalisable hate speech detection: a review on obstacles and
solutions [6.531659195805749]
本稿では,既存のヘイトスピーチ検出モデルの一般化について概説する。
主な障害に対処する既存の試みを要約し、ヘイトスピーチ検出における一般化を改善するための今後の研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-02-17T17:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。