Functional Integrative Bayesian Analysis of High-dimensional
Multiplatform Genomic Data
- URL: http://arxiv.org/abs/2212.14165v1
- Date: Thu, 29 Dec 2022 03:31:45 GMT
- Title: Functional Integrative Bayesian Analysis of High-dimensional
Multiplatform Genomic Data
- Authors: Rupam Bhattacharyya and Nicholas Henderson and Veerabhadran
Baladandayuthapani
- Abstract summary: We propose a framework called Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data (fiBAG)
fiBAG allows simultaneous identification of upstream functional evidence of proteogenomic biomarkers.
We demonstrate the profitability of fiBAG via a pan-cancer analysis of 14 cancer types.
- Score: 0.8029049649310213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rapid advancements in collection and dissemination of multi-platform
molecular and genomics data has resulted in enormous opportunities to aggregate
such data in order to understand, prevent, and treat human diseases. While
significant improvements have been made in multi-omic data integration methods
to discover biological markers and mechanisms underlying both prognosis and
treatment, the precise cellular functions governing these complex mechanisms
still need detailed and data-driven de-novo evaluations. We propose a framework
called Functional Integrative Bayesian Analysis of High-dimensional
Multiplatform Genomic Data (fiBAG), that allows simultaneous identification of
upstream functional evidence of proteogenomic biomarkers and the incorporation
of such knowledge in Bayesian variable selection models to improve signal
detection. fiBAG employs a conflation of Gaussian process models to quantify
(possibly non-linear) functional evidence via Bayes factors, which are then
mapped to a novel calibrated spike-and-slab prior, thus guiding selection and
providing functional relevance to the associations with patient outcomes. Using
simulations, we illustrate how integrative methods with functional calibration
have higher power to detect disease related markers than non-integrative
approaches. We demonstrate the profitability of fiBAG via a pan-cancer analysis
of 14 cancer types to identify and assess the cellular mechanisms of
proteogenomic markers associated with cancer stemness and patient survival.
Related papers
- LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification [41.94295877935867]
This paper introduces LASSO-MOGAT, a graph-based deep learning framework that integrates messenger RNA, microRNA, and DNA methylation data to classify 31 cancer types.
arXiv Detail & Related papers (2024-08-30T16:26:04Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease.
We introduce Mixture Modeling for Multiple Learning Instance (MMIL), an expectation method that enables the training and calibration of cell-level classifiers.
arXiv Detail & Related papers (2024-06-12T15:22:56Z) - Unlocking the Power of Multi-institutional Data: Integrating and Harmonizing Genomic Data Across Institutions [3.5489676012585236]
We introduce the Bridge model to derive integrated features to preserve information beyond common genes.
The model consistently excels in predicting patient survival across six cancer types in GENIE BPC data.
arXiv Detail & Related papers (2024-01-30T23:25:05Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Optimal transport for automatic alignment of untargeted metabolomic data [8.692678207022084]
We introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport.
By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness.
We show how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.
arXiv Detail & Related papers (2023-06-05T20:08:19Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Interpretable multimodal fusion networks reveal mechanisms of brain
cognition [26.954460880062506]
We develop an interpretable multimodal fusion model, gCAM-CCL, which can perform automated diagnosis and result interpretation simultaneously.
We validate the gCAM-CCL model on a brain imaging-genetic study, and show gCAM-CCL's performed well for both classification and mechanism analysis.
arXiv Detail & Related papers (2020-06-16T18:52:50Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
We propose a novel mixed graphical model approach to analyze multi-omic data of different types.
We find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results.
arXiv Detail & Related papers (2020-05-08T16:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.