LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification
- URL: http://arxiv.org/abs/2408.17384v1
- Date: Fri, 30 Aug 2024 16:26:04 GMT
- Title: LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification
- Authors: Fadi Alharbi, Aleksandar Vakanski, Murtada K. Elbashir, Mohanad Mohammed,
- Abstract summary: This paper introduces LASSO-MOGAT, a graph-based deep learning framework that integrates messenger RNA, microRNA, and DNA methylation data to classify 31 cancer types.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning methods to analyze changes in gene expression patterns has recently emerged as a powerful approach in cancer research, enhancing our understanding of the molecular mechanisms underpinning cancer development and progression. Combining gene expression data with other types of omics data has been reported by numerous works to improve cancer classification outcomes. Despite these advances, effectively integrating high-dimensional multi-omics data and capturing the complex relationships across different biological layers remains challenging. This paper introduces LASSO-MOGAT (LASSO-Multi-Omics Gated ATtention), a novel graph-based deep learning framework that integrates messenger RNA, microRNA, and DNA methylation data to classify 31 cancer types. Utilizing differential expression analysis with LIMMA and LASSO regression for feature selection, and leveraging Graph Attention Networks (GATs) to incorporate protein-protein interaction (PPI) networks, LASSO-MOGAT effectively captures intricate relationships within multi-omics data. Experimental validation using five-fold cross-validation demonstrates the method's precision, reliability, and capacity for providing comprehensive insights into cancer molecular mechanisms. The computation of attention coefficients for the edges in the graph by the proposed graph-attention architecture based on protein-protein interactions proved beneficial for identifying synergies in multi-omics data for cancer classification.
Related papers
- Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
Multi-omics data integration poses significant challenges due to the high dimensionality, data complexity, and distinct characteristics of various omics types.
This study evaluates three graph neural network architectures for multi-omics (MO) integration based on graph-convolutional networks (GCN), graph-attention networks (GAT), and graph-transformer networks (GTN)
arXiv Detail & Related papers (2024-10-05T16:17:44Z) - Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences.
In this work, we introduce a novel stacked ensemble based mutagenicity prediction model.
arXiv Detail & Related papers (2024-09-03T09:14:21Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
We introduce a novel integrative neural network approach for cancer molecular subtype and biomedical classification applications.
IGCN can identify which types of omics receive more emphasis for each patient to predict a certain class.
IGCN has the capability to pinpoint significant biomarkers from a range of omics data types.
arXiv Detail & Related papers (2024-01-31T05:52:11Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - MoCLIM: Towards Accurate Cancer Subtyping via Multi-Omics Contrastive
Learning with Omics-Inference Modeling [9.900594964709116]
We develop MoCLIM, a representation learning framework for cancer subtyping.
We show that our approach significantly improves data fit and subtyping performance in fewer high-dimensional cancer instances.
Our framework incorporates various medical evaluations as the final component, providing high interpretability in medical analysis.
arXiv Detail & Related papers (2023-08-17T10:49:48Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
We propose a novel mixed graphical model approach to analyze multi-omic data of different types.
We find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results.
arXiv Detail & Related papers (2020-05-08T16:34:58Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.