Experimental Quantum Communication Overcomes the Rate-loss Limit without
Global Phase Tracking
- URL: http://arxiv.org/abs/2212.14190v4
- Date: Sun, 6 Aug 2023 03:18:22 GMT
- Title: Experimental Quantum Communication Overcomes the Rate-loss Limit without
Global Phase Tracking
- Authors: Lai Zhou, Jinping Lin, Yuan-Mei Xie, Yu-Shuo Lu, Yumang Jing, Hua-Lei
Yin, and Zhiliang Yuan
- Abstract summary: We implement an innovative but simpler measurement-device-independent QKD which realizes repeater-like communication through asynchronous coincidence pairing.
Over 413 and 508 km optical fibers, we achieve finite-size SKRs of 590.61 and 42.64 bit/s, which are respectively 1.80 and 4.08 times of their corresponding absolute rate limits.
Our work will bring forward economical and efficient quantum-secure networks intercity.
- Score: 0.27264625806312304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Secure key rate (SKR) of point-point quantum key distribution (QKD) is
fundamentally bounded by the rate-loss limit. Recent breakthrough of twin-field
(TF) QKD can overcome this limit and enables long distance quantum
communication, but its implementation necessitates complex global phase
tracking and requires strong phase references which not only add to noise but
also reduce the duty cycle for quantum transmission. Here, we resolve these
shortcomings, and importantly achieve even higher SKRs than TF-QKD, via
implementing an innovative but simpler measurement-device-independent QKD which
realizes repeater-like communication through asynchronous coincidence pairing.
Over 413 and 508 km optical fibers, we achieve finite-size SKRs of 590.61 and
42.64 bit/s, which are respectively 1.80 and 4.08 times of their corresponding
absolute rate limits. Significantly, the SKR at 306 km exceeds 5 kbit/s and
meets the bitrate requirement for live one-time-pad encryption of voice
communication. Our work will bring forward economical and efficient intercity
quantum-secure networks.
Related papers
- Post-Measurement Pairing Quantum Key Distribution with Local Optical Frequency Standard [4.212309568835716]
Post-measurement coincidence pairing eliminates the need for tracking the differential phase of the users' lasers.
We confirm the setup's repeater-like behavior and achieve a finite-size secure key rate (SKR) of 15.94 bit/s over 504 km fiber.
Our work paves the way towards an efficient muti-user quantum network with the local frequency standard.
arXiv Detail & Related papers (2024-07-20T06:26:05Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Twin-field quantum key distribution with local frequency reference [18.04679036242816]
We propose and demonstrate a simple and practical approach to realize TF-QKD without requiring relative frequency control of the independent laser sources.
We experimentally demonstrate the TF-QKD over 502 km, 301 km and 201 km ultra-low loss optical fiber respectively.
We expect this high-performance scheme will find widespread usage in future intercity and free-space quantum communication networks.
arXiv Detail & Related papers (2023-10-27T17:29:52Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Twin-field quantum key distribution without phase locking [18.013181607967322]
We show an approach to recover the single-photon interference pattern and realize TF-QKD emphwithout phase locking.
Our work provides a scalable and practical solution to TF-QKD, thus representing an important step towards its wide applications.
arXiv Detail & Related papers (2022-12-08T15:03:12Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Twin-field quantum key distribution without optical frequency
dissemination [0.35557219875516644]
We introduce a novel technique that can stabilise an open channel without using a closed interferometer.
We develop a simple and versatile TF-QKD setup that does not need service fibre and can operate over links of 100 km asymmetry.
We confirm the setup's repeater-like behaviour and obtain a finite-size rate of 0.32 bit/s at a distance of 615.6 km.
arXiv Detail & Related papers (2022-08-19T13:56:14Z) - Continuous entanglement distribution over a transnational 248 km fibre
link [58.720142291102135]
Entanglement is the basis of many quantum applications.
We present a continuously working international link between Austria and Slovakia.
We measure stable pair rates of 9 s$-1$ over an exemplary operation time of 110 hours.
arXiv Detail & Related papers (2022-03-23T13:55:27Z) - Long-distance twin-field quantum key distribution with entangled sources [4.334669226849793]
We propose a scheme to implement TFQKD with an entangled coherent state source in the middle to increase its range.
Our work is a promising step toward long-distance secure communication and is greatly compatible with future global quantum network.
arXiv Detail & Related papers (2021-11-06T02:01:42Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.