Post-Measurement Pairing Quantum Key Distribution with Local Optical Frequency Standard
- URL: http://arxiv.org/abs/2407.14771v1
- Date: Sat, 20 Jul 2024 06:26:05 GMT
- Title: Post-Measurement Pairing Quantum Key Distribution with Local Optical Frequency Standard
- Authors: Chengfang Ge, Lai Zhou, Jinping Lin, Hua-Lei Yin, Qiang Zeng, Zhiliang Yuan,
- Abstract summary: Post-measurement coincidence pairing eliminates the need for tracking the differential phase of the users' lasers.
We confirm the setup's repeater-like behavior and achieve a finite-size secure key rate (SKR) of 15.94 bit/s over 504 km fiber.
Our work paves the way towards an efficient muti-user quantum network with the local frequency standard.
- Score: 4.212309568835716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The idea of post-measurement coincidence pairing simplifies substantially long-distance, repeater-like quantum key distribution (QKD) by eliminating the need for tracking the differential phase of the users' lasers. However, optical frequency tracking remains necessary and can become a severe burden in future deployment of multi-node quantum networks. Here, we resolve this problem by referencing each user's laser to an absolute frequency standard and demonstrate a practical post-measurement pairing QKD with excellent long-term stability. We confirm the setup's repeater-like behavior and achieve a finite-size secure key rate (SKR) of 15.94 bit/s over 504 km fiber, which overcomes the absolute repeaterless bound by 1.28 times. Over a fiber length 100 km, the setup delivers an impressive SKR of 285.68 kbit/s. Our work paves the way towards an efficient muti-user quantum network with the local frequency standard.
Related papers
- Independent Optical Frequency Combs Powered 546 km Field Test of Twin-Field Quantum Key Distribution [11.624641255237634]
We verify in field the viability of using independent optical frequency combs.
We record a finite-size secure key rate (SKR) of 0.53bit/s and an asymmetry of 0.12 bit/s.
Our work marks an important step towards incorporation of long-haul fiber links into large quantum networks.
arXiv Detail & Related papers (2024-11-21T08:54:03Z) - Twin-field quantum key distribution with local frequency reference [18.04679036242816]
We propose and demonstrate a simple and practical approach to realize TF-QKD without requiring relative frequency control of the independent laser sources.
We experimentally demonstrate the TF-QKD over 502 km, 301 km and 201 km ultra-low loss optical fiber respectively.
We expect this high-performance scheme will find widespread usage in future intercity and free-space quantum communication networks.
arXiv Detail & Related papers (2023-10-27T17:29:52Z) - Two-mode squeezing over deployed fiber coexisting with conventional
communications [55.41644538483948]
Multi-mode squeezing is critical for enabling CV quantum networks and distributed quantum sensing.
To date, multi-mode squeezing measured by homodyne detection has been limited to single-room experiments.
This demonstration enables future applications in quantum networks and quantum sensing that rely on distributed multi-mode squeezing.
arXiv Detail & Related papers (2023-04-20T02:29:33Z) - Experimental Quantum Communication Overcomes the Rate-loss Limit without
Global Phase Tracking [0.27264625806312304]
We implement an innovative but simpler measurement-device-independent QKD which realizes repeater-like communication through asynchronous coincidence pairing.
Over 413 and 508 km optical fibers, we achieve finite-size SKRs of 590.61 and 42.64 bit/s, which are respectively 1.80 and 4.08 times of their corresponding absolute rate limits.
Our work will bring forward economical and efficient quantum-secure networks intercity.
arXiv Detail & Related papers (2022-12-29T06:31:07Z) - Twin-field quantum key distribution without phase locking [18.013181607967322]
We show an approach to recover the single-photon interference pattern and realize TF-QKD emphwithout phase locking.
Our work provides a scalable and practical solution to TF-QKD, thus representing an important step towards its wide applications.
arXiv Detail & Related papers (2022-12-08T15:03:12Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Twin-field quantum key distribution without optical frequency
dissemination [0.35557219875516644]
We introduce a novel technique that can stabilise an open channel without using a closed interferometer.
We develop a simple and versatile TF-QKD setup that does not need service fibre and can operate over links of 100 km asymmetry.
We confirm the setup's repeater-like behaviour and obtain a finite-size rate of 0.32 bit/s at a distance of 615.6 km.
arXiv Detail & Related papers (2022-08-19T13:56:14Z) - Continuous entanglement distribution over a transnational 248 km fibre
link [58.720142291102135]
Entanglement is the basis of many quantum applications.
We present a continuously working international link between Austria and Slovakia.
We measure stable pair rates of 9 s$-1$ over an exemplary operation time of 110 hours.
arXiv Detail & Related papers (2022-03-23T13:55:27Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.