論文の概要: Eliminating Meta Optimization Through Self-Referential Meta Learning
- arxiv url: http://arxiv.org/abs/2212.14392v1
- Date: Thu, 29 Dec 2022 17:53:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 15:01:36.056132
- Title: Eliminating Meta Optimization Through Self-Referential Meta Learning
- Title(参考訳): 自己参照型メタ学習によるメタ最適化の排除
- Authors: Louis Kirsch, J\"urgen Schmidhuber
- Abstract要約: 明示的なメタ最適化を必要とせずに自己修正を行う自己参照メタ学習システムについて検討する。
ニューラルネットワークは、帯域幅と古典的な制御タスクを解決するために自己修正を行い、自己修正を改善し、学習方法を学ぶ。
- 参考スコア(独自算出の注目度): 5.584060970507506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta Learning automates the search for learning algorithms. At the same time,
it creates a dependency on human engineering on the meta-level, where meta
learning algorithms need to be designed. In this paper, we investigate
self-referential meta learning systems that modify themselves without the need
for explicit meta optimization. We discuss the relationship of such systems to
in-context and memory-based meta learning and show that self-referential neural
networks require functionality to be reused in the form of parameter sharing.
Finally, we propose fitness monotonic execution (FME), a simple approach to
avoid explicit meta optimization. A neural network self-modifies to solve
bandit and classic control tasks, improves its self-modifications, and learns
how to learn, purely by assigning more computational resources to better
performing solutions.
- Abstract(参考訳): メタ学習は学習アルゴリズムの検索を自動化する。
同時に、メタ学習アルゴリズムを設計する必要があるメタレベルでのヒューマンエンジニアリングへの依存も生み出します。
本稿では,明示的なメタ最適化を必要としない自己参照メタ学習システムについて検討する。
このようなシステムとコンテキスト内およびメモリベースのメタ学習との関係を議論し、自己参照型ニューラルネットワークがパラメータ共有の形で再利用する必要があることを示す。
最後に、明示的なメタ最適化を避けるための簡単なアプローチであるフィットネスモノトニック実行(FME)を提案する。
ニューラルネットワークは、バンディットや古典的な制御タスクを解決するために自己修正を行い、自己修正を改善し、学習する方法を学習する。
関連論文リスト
- Fast Adaptation with Kernel and Gradient based Meta Leaning [4.763682200721131]
モデルAメタラーニング(MAML)の内輪と外輪の両方を改善するための2つのアルゴリズムを提案する。
最初のアルゴリズムは関数空間の最適化問題を再定義し、閉形式解を用いてモデルを更新する。
外ループでは、内ループの各タスクの損失に重みを割り当てることで、第2のアルゴリズムがメタラーナーの学習を調整する。
論文 参考訳(メタデータ) (2024-11-01T07:05:03Z) - General-Purpose In-Context Learning by Meta-Learning Transformers [45.63069059498147]
本研究では,トランスフォーマーや他のブラックボックスモデルをメタトレーニングして,汎用的なインコンテキスト学習者として機能させることができることを示す。
一般化するアルゴリズム、記憶するアルゴリズム、メタトレーニングに失敗するアルゴリズム間の遷移を特徴付ける。
本稿では,学習アルゴリズムのメタトレーニングとメタ汎用化を改善するためのトレーニング分布の偏りなどの実践的介入を提案する。
論文 参考訳(メタデータ) (2022-12-08T18:30:22Z) - Accelerating Gradient-based Meta Learner [2.1349209400003932]
我々は,MAML (Model Agnostic Meta Learning) などのメタ学習アルゴリズムを高速化する様々なアクセラレーション手法を提案する。
本稿では,メタ学習プロセスの高速化だけでなく,モデルの精度向上にも寄与する,クラスタ内でのトレーニングタスクの新たな方法を提案する。
論文 参考訳(メタデータ) (2021-10-27T14:27:36Z) - Bootstrapped Meta-Learning [48.017607959109924]
本稿では,メタ学習者が自らを教えることによって,メタ最適化問題に挑戦するアルゴリズムを提案する。
アルゴリズムはまずメタラーナーからターゲットをブートストラップし、選択した(擬似)測度の下でそのターゲットまでの距離を最小化することでメタラーナーを最適化する。
我々は、Atari ALEベンチマークでモデルフリーエージェントの新たな最先端技術を実現し、数ショットの学習においてMAMLを改善し、我々のアプローチがいかに新しい可能性を開くかを実証する。
論文 参考訳(メタデータ) (2021-09-09T18:29:05Z) - Learning an Explicit Hyperparameter Prediction Function Conditioned on
Tasks [62.63852372239708]
メタ学習は、観察されたタスクから機械学習の学習方法論を学び、新しいクエリタスクに一般化することを目的としている。
我々は、これらの学習手法を、全てのトレーニングタスクで共有される明示的なハイパーパラメータ予測関数の学習として解釈する。
このような設定は、メタ学習方法論が多様なクエリタスクに柔軟に適合できることを保証する。
論文 参考訳(メタデータ) (2021-07-06T04:05:08Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Modeling and Optimization Trade-off in Meta-learning [23.381986209234164]
メタラーニングにおいて、正確なモデリングと容易さのトレードオフを導入し、厳密に定義する。
我々はMAMLを代表的メタラーニングアルゴリズムとして、一般的な非リスク関数と線形回帰のトレードオフを理論的に特徴づける。
また,メタ強化学習ベンチマークのトレードオフを実証的に解決する。
論文 参考訳(メタデータ) (2020-10-24T15:32:08Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
数ショット分類のための高速な最適化に基づくメタラーニング手法を提案する。
我々の戦略はメタ学習において学習すべき基礎学習者の目的の重要な側面を可能にする。
我々は、我々のアプローチの速度と効果を実証し、総合的な実験分析を行う。
論文 参考訳(メタデータ) (2020-10-01T15:59:31Z) - Meta-Gradient Reinforcement Learning with an Objective Discovered Online [54.15180335046361]
本稿では,深層ニューラルネットワークによって柔軟にパラメータ化される,自己目的のメタ段階的降下に基づくアルゴリズムを提案する。
目的はオンラインで発見されるため、時間とともに変化に適応することができる。
Atari Learning Environmentでは、メタグラディエントアルゴリズムが時間とともに適応して、より効率よく学習する。
論文 参考訳(メタデータ) (2020-07-16T16:17:09Z) - Rethinking Few-Shot Image Classification: a Good Embedding Is All You
Need? [72.00712736992618]
メタトレーニングセット上で教師付きあるいは自己教師型表現を学習する単純なベースラインが、最先端の数ショット学習方法より優れていることを示す。
追加の増量は自己蒸留によって達成できる。
我々は,この発見が,画像分類ベンチマークとメタ学習アルゴリズムの役割を再考する動機となっていると考えている。
論文 参考訳(メタデータ) (2020-03-25T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。