Quantum Mass Production Theorems
- URL: http://arxiv.org/abs/2212.14399v2
- Date: Tue, 2 May 2023 18:41:54 GMT
- Title: Quantum Mass Production Theorems
- Authors: William Kretschmer
- Abstract summary: We prove that for any $n$-qubit unitary transformation $U$ there exists a quantum circuit to implement $Uotimes r$ with at most $O(4n)$ gates.
We also establish results for quantum states and diagonal unitary transformations.
- Score: 0.22843885788439797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We prove that for any $n$-qubit unitary transformation $U$ and for any $r =
2^{o(n / \log n)}$, there exists a quantum circuit to implement $U^{\otimes r}$
with at most $O(4^n)$ gates. This asymptotically equals the number of gates
needed to implement just a single copy of a worst-case $U$. We also establish
analogous results for quantum states and diagonal unitary transformations. Our
techniques are based on the work of Uhlig [Math. Notes 1974], who proved a
similar mass production theorem for Boolean functions.
Related papers
- Compact Circuits for Constrained Quantum Evolutions of Sparse Operators [0.0]
We introduce a general framework for constructing compact quantum circuits that implement the real-time evolution of Hamiltonians of the form $H = sigma P_B$.
Such Hamiltonians frequently arise in quantum algorithms, including constrained mixers in QAOA, fermionic and excitation operators in VQE, and lattice gauge theory applications.
arXiv Detail & Related papers (2025-04-12T08:47:59Z) - Fault-tolerant fermionic quantum computing [39.58317527488534]
We introduce fermionic fault-tolerant quantum computing, a framework which removes this overhead altogether.<n>We show how our framework can be implemented in neutral atoms, overcoming the apparent inability of neutral atoms to implement non-number-conserving gates.
arXiv Detail & Related papers (2024-11-13T19:00:02Z) - Circuit Complexity of Sparse Quantum State Preparation [0.0]
We show that any $n$-qubit $d$-sparse quantum state can be prepared by a quantum circuit of size $O(fracdnlog d)$ and depth $Theta(log dn)$ using at most $O(fracndlog d )$ ancillary qubits.
We also establish the lower bound $Omega(fracdnlog(n + m) + log d + n)$ on the circuit size with $m$ ancillary qubits available.
arXiv Detail & Related papers (2024-06-23T15:28:20Z) - Efficient Fault-Tolerant Single Qubit Gate Approximation And Universal Quantum Computation Without Using The Solovay-Kitaev Theorem [0.0]
A recent improvement of the Solovay-Kitaev theorem implies that to approximate any single-qubit gate to an accuracy of $epsilon > 0$ requires $textO(logc[1/epsilon)$ quantum gates with $c > 1.44042$.
Here I give a partial answer to this question by showing that this is possible using $textO(log[/epsilon] loglog[/epsilon] cdots)$ FT gates chosen from a finite set depending on the value of $
arXiv Detail & Related papers (2024-06-07T11:21:05Z) - Efficient unitary designs and pseudorandom unitaries from permutations [35.66857288673615]
We show that products exponentiated sums of $S(N)$ permutations with random phases match the first $2Omega(n)$ moments of the Haar measure.
The heart of our proof is a conceptual connection between the large dimension (large-$N$) expansion in random matrix theory and the method.
arXiv Detail & Related papers (2024-04-25T17:08:34Z) - Error-corrected Hadamard gate simulated at the circuit level [42.002147097239444]
We simulate the logical Hadamard gate in the surface code under a circuit-level noise model.
Our paper is the first to do this for a unitary gate on a quantum error-correction code.
arXiv Detail & Related papers (2023-12-18T19:00:00Z) - Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates [40.56175933029223]
We propose two types of constant-depth constructions for implementing Uniformly Controlled Gates.
We obtain constant-depth circuits for the quantum counterparts of read-only and read-write memory devices.
arXiv Detail & Related papers (2023-08-16T17:54:56Z) - On the moments of random quantum circuits and robust quantum complexity [0.0]
We prove new lower bounds on the growth of robust quantum circuit complexity.
We show two bounds for random quantum circuits with local gates drawn from a subgroup of $SU(4)$.
arXiv Detail & Related papers (2023-03-29T18:06:03Z) - Exponential Separation between Quantum and Classical Ordered Binary
Decision Diagrams, Reordering Method and Hierarchies [68.93512627479197]
We study quantum Ordered Binary Decision Diagrams($OBDD$) model.
We prove lower bounds and upper bounds for OBDD with arbitrary order of input variables.
We extend hierarchy for read$k$-times Ordered Binary Decision Diagrams ($k$-OBDD$) of width.
arXiv Detail & Related papers (2022-04-22T12:37:56Z) - Halving the cost of quantum multiplexed rotations [0.0]
We improve the number of $T$ gates needed for a $b$-bit approximation of a multiplexed quantum gate with $c$ controls.
Our results roughly halve the cost of state-of-art electronic structure simulations based on qubitization of double-factorized or tensor-hypercontracted representations.
arXiv Detail & Related papers (2021-10-26T06:49:44Z) - Primitive Quantum Gates for Dihedral Gauge Theories [0.0]
We describe the simulation of dihedral gauge theories on digital quantum computers.
The nonabelian discrete gauge group $D_N$ serves as an approximation to $U(1)timesbbZ$ lattice gauge theory.
arXiv Detail & Related papers (2021-08-30T15:16:47Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - Quantum supremacy and hardness of estimating output probabilities of
quantum circuits [0.0]
We prove under the theoretical complexity of the non-concentration hierarchy that approximating the output probabilities to within $2-Omega(nlogn)$ is hard.
We show that the hardness results extend to any open neighborhood of an arbitrary (fixed) circuit including trivial circuit with identity gates.
arXiv Detail & Related papers (2021-02-03T09:20:32Z) - Quantum Coupon Collector [62.58209964224025]
We study how efficiently a $k$-element set $Ssubseteq[n]$ can be learned from a uniform superposition $|Srangle of its elements.
We give tight bounds on the number of quantum samples needed for every $k$ and $n$, and we give efficient quantum learning algorithms.
arXiv Detail & Related papers (2020-02-18T16:14:55Z) - Trading T gates for dirty qubits in state preparation and unitary synthesis [0.0]
We present a quantum algorithm for preparing any dimension-$N$ pure quantum state specified by a list of $N$ classical numbers.
Our scheme uses $mathcalO(fracNlambda+lambdalogfracNepsilonlogfraclogNepsilon)$ to reduce the T-gate cost to $mathcalO(fracNlambda+lambdalogfracNepsilonlogfraclogNepsilon)$
arXiv Detail & Related papers (2018-12-03T18:24:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.